Advertisement

Synthetic Thrombin Inhibitors as Anticoagulants Pharmacological Aspects

  • F. Markwardt
  • J. Hauptmann
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 340)

Abstract

Thromboembolic disorders are a major cause of morbidity and mortality in industrialized countries. For prophylaxis of thrombosis at present the so-called indirect anticoagulants of the dicoumarol type, the biopolymer heparin and several antiplatelet drugs are used. The active principle of the medicinal leech, hirudin, is available now as a recombinant product and is being tested clinically. Each of the mentioned anticoagulants has its values and limitations, based either on the chemical nature or on the mode of action. Antithrombotic regimes that do not interfere with the coagulation system are proposed; their value, however, has not yet been fully documented.

Keywords

Disseminate Intravascular Coagulation Disseminate Intravascular Coagulation Antithrombotic Effect Synthetic Inhibitor Amniotic Fluid Embolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.A. Krenitsky, and G.B. Elion, Enzymes as tools and targets in drug research, in: Strategy in Drug Research, Ed.: J.A. Keverling Buisman, Elsevier, Amsterdam, 65 (1982).Google Scholar
  2. 2.
    T.M. Penning, Design of suicide substrates: an approach to the development of highly selective enzyme inhibitors as drugs, Trends Pharmacol. Sci. 4: 212 (1963).Google Scholar
  3. 3.
    H.J. Smith, Perspectives in the design of small molecule enzyme inhibitors as useful drugs, J. Theor. Biol. 73: 531 (1978).PubMedGoogle Scholar
  4. 4.
    C.T. Walsh, Suicide substrates, mechanism-based enzyme inactivators: recent developments, Ann. Rev. Biochem. 53: 493 (1984).PubMedGoogle Scholar
  5. 5.
    J.D. Geratz, and R.R. Tidwell, Current concepts of action of synthetic thrombin inhibitors, Haemostasis 7: 170 (1987).Google Scholar
  6. 6.
    F. Markwardt, Pharmacological control of blood coagulation by synthetic, low-molecular weight inhibitors of clotting enzymes. A new concept of anticoagulants, Trends Pharmacol. Sci. 1: 153 (1980).Google Scholar
  7. 7.
    F. Markwardt, G. Nowak, and J. Hoffmann, Comparative study of thrombin inhibitors in experimental microthrombosis, Thrombos. Haemostas. 49: 235 (1983).Google Scholar
  8. 8.
    E. Shaw, Synthetic irreversible inhibitors of coagulation enzymes, Folia Haematol. (Lpz.) 109: 33 (1982).Google Scholar
  9. 9.
    J. Stürzebecher, Inhibitors of thrombin, in: The Thrombin. Vol. I ed: R. Machovich, CRC Press, Boca Baton, Fl., 131 (1984).Google Scholar
  10. 10.
    J. Stürzebecher, and F. Markwardt, Synthetische Inhibitoren des Thrombins and andere Gerinnungsenzyme - Struktur and Wirkung, Beitr. Wirkst. Forsch. 16: 1 (1983).Google Scholar
  11. 11.
    D. Bagdy, E. Barabas, L. Sebestyen, M. Dioszegi, S. Fittler, S. Bajusz, and E. Szell, Correlation between the anticoagulant and antiplatelet effect of D-PhePro-Arg-H (RGH-2958), Thrombos. Haemostas. 58: 177 (Abstr. 649) (1987).Google Scholar
  12. 12.
    D. Bagdy, E. Barabas, E. Sze11, and S. Bajusz, Uber die biochemische Pharmakologie einger Tripeptidaldehyde, Folia Haematol. (Lpz). 109: 22 (1982).Google Scholar
  13. 13.
    E. Barabas, S. Bajusz, D. Bagdy, and E. Szell, Studies on the inhibition by synthetic tripeptides of blood clotting, Acta Biochim. Biophys. 11: 207 (1976).Google Scholar
  14. 14.
    J.I. Witting, C. Pouliott, J.L. C.talfamo, J. Fareed, and J.W. Fenton II, Thrombin inhibition with dipeptidyl argininals. Thromb. Res. 50: 461 (1986).Google Scholar
  15. 15.
    S. Bajusz, E. Szell, D. Bagdy, E. Barabas, G. Horvath, M. Dioszegi, S. Fittler, G. Szabo, A. Juhasz, E. Tomori, and G. Szilagy G, Highly active and selective anticoagulants: D-Phe-Pro-Arg-H, a free tripeptide aldehyde prone to spontaneous inactivation, and its stable N-methyl derivative, D-MePhe-Pro-Arg-H, J. Med. Chem. 33: 1729 (1990).PubMedGoogle Scholar
  16. 16.
    S. Bajusz, The story of D-MePhe-Pro-Arg-H, the likely anticoagulant and antithrombotic of the future, Biokemie (Budapest) XIV /3: 127 (1990).Google Scholar
  17. 17.
    C. Kettner, and E. Shaw, D-Phe-Pro-ArgCH2C1 - A selective affinity label for thrombin. Thromb. Res. 14: 969 (1979).PubMedGoogle Scholar
  18. 18.
    H.R. Lijnen, M. Uytterhoeven, and D. Collen, Inhibition of trypsin-like serine proteinases by tripeptide arginyl and lysyl chloromethylketones, Thromb. Res. 34: 431 (1994).Google Scholar
  19. 19.
    Bagdy, E. Barabas, M. Dioszegi, S. Bajusz, and A. Feher, Comparative studies on the anticoagulant effects of D-Phe-Pro-Arg-H /1/ and D-Phe-Pro-ArgCH2C1 /2/, Thrombos. Haemostas. 50: 53 (Abstr. 0146) (1983).Google Scholar
  20. 20.
    D. Collen, O. Matsuo, J.M. Stassen, C. Kenner, and E. Shaw, In vivo studies of a synthetic inhibitor of thrombin, J. Lab. Clin. Med. 99: 76 (1982).PubMedGoogle Scholar
  21. 21.
    J. Hauptmann, and F. Markwardt, Studies on the anticoagulant and anti-thrombotic action of an irreversible thrombin inhibitor, Thromb. Res. 20: 347 (1980).Google Scholar
  22. 22.
    W. Stuber, H. Kosina, and N. Heimburger, Synthesis of a tripeptide with a C-terminal nitrile moiety and the inhibition of proteinases, Int. J. Peptide Protein Res. 31: 63 (1988).Google Scholar
  23. 23.
    C. Kenner, L. Mersinger, and R. Knabb, The selective inhibition of thrombin by peptides of boroarginine, J. Biol. Chem. 265: 18289 (1990).Google Scholar
  24. 24.
    T. Ueda, C.M. Kam, and J.C. Powers, The synthesis of arginyl-fluoroalkanes, their inhibition of trypsin and blood-coagulation serine proteinases and their anticoagulant activity, Biochem. J. 285: 539 (1990).Google Scholar
  25. 25.
    R. Kikumoto, Y. Tamao, K. Ohkubo, T. Tezuka, S. Tonomura, S. Okamoto and H. Hijikata, Thrombin inhibitors. 3. Carboxyl-containing amide derivatives of Na substituted L-arginine, J. Med. Chem. 23: 1293 (1980).PubMedGoogle Scholar
  26. 26.
    R. Kikumoto, Y. Tamao, T. Tezuka, S. Tonomura, H. Hara, K. Ninomiya, A. Hijikata, and S. Okamoto, Selective inhibition of thrombin by (2R,4R)-4-methyl1-(N2-((3-methyl-1,2,3,4-tetrahy-8. Quinolinyl)sulfonyl)-L-arginyl)-2piperidinecarboxylic acid, Biochemistry 23: 85 (1984).PubMedGoogle Scholar
  27. 27.
    S. Okamoto, A. Hijikata, R. Kikumoto, S. Tonomura, N. Hara, K. Ninomiya, Maruyama, S. Sugano, and Y. Tamao, Potent inhibition of thrombin by the newly synthesized arginine derivative No.805: the importance of the stereostructure of its hydrophobic carboxamide portion, Biochem. Biophys. Res. Commun. 101: 440 (1981).Google Scholar
  28. 28.
    S. Tonomura, R. Kikumoto, Y. Tamao, K. Ohkubo, S. Okamoto, A. Kinjo, A. Hijikata, A novel series of synthetic thrombin inhibitors. II. Relationships between structure of modified OM inhibitors and thrombin-inhibitory effect, Kobe J. Med. Sci. 26: 1 (1980).Google Scholar
  29. 29.
    J. Hauptmann, and F. Markwardt F, Pharmakologie synthetischer ThrombinInhibitoren. Beitr. Wirkst. Forsch. 26: 1 (1986).Google Scholar
  30. 30.
    F. Markwardt, and J. Hauptmann, Synthetische Thrombininhibitoren als Antithrombotika. Z. Klin. Med. 41: 540 (1986).Google Scholar
  31. 31.
    F. Markwardt, and J. Stürzebecher, Inhibitors of trypsin and trypsin-like enzymes with a physiological role, in: M.H. Sandler, J. Smith (eds.) Design of Enzyme Inhibitors as Drugs, Oxford University Press, Oxford, 619 (1989).Google Scholar
  32. 32.
    F. Markwardt, G. Wagner, J. Stürzebecher, and P. Walsmann, Na arylsulfonylw(4-amidinophenyl)-a-aminoalkyl-carboxlic amides - novel selective inhibitors of thrombin, Thromb. Res. 17: 425 (1980).Google Scholar
  33. 33.
    J. Hauptmann, Pharmacology of benzamidine-type thrombin inhibitors, Folia Haematol. (Lpz.) 109: 89 (1982).Google Scholar
  34. 34.
    J. Hauptmann, B. Kaiser, F. Markwardt, and G. Nowak, Anticoagulant and anti-thrombotic action of novel specific inhibitors of thrombin, Thrombos. Haemostas. 43: 118 (1980).Google Scholar
  35. 35.
    J. Stürzebecher, F. Markwardt, B. Voigt, G. Wagner, and P. Walsmann, Cyclic amides of Na-arylsulfonaminoacylated 4-amidinophenyl-alanine - tight binding inhibitors of thrombin, Thromb. Res. 29: 635 (1983).Google Scholar
  36. 36.
    Y. Cadroy, C. Caranobe, A. Bernat, J.P. Maffrand, P. Sie, and B. Boneu, Antithrombotic and bleeding effects of a new synthetic thrombin inhibitor and of standard heparin in the rabbit, Thrombos. Haemostas. 58: 764 (1987).Google Scholar
  37. 37.
    G. Etemad-Moghadam, D. Delebasse, J.P. Maffrand, and D. Frehel, Syntheses of Na-(ß-naphthyl-sulfonyl-aminoglycyl) argininamides as potential selective synthetic thrombin inhibitors, Eur. J. Med. Chem. 23: 577 (1988).Google Scholar
  38. 38.
    G. Claeson, S. Gustaysson, and C. Mattsson, New derivatives of p-guanidinophenylalanine as potent reversible inhibitors of thrombin. Thrombos. Haemostas. 50: 53 (Abstr. 0147) (1983).Google Scholar
  39. 39.
    R. Ferroni, E. Menegatti, and P. Orlandini, Aromatic tetra-amidines: antiproteolytic and antiesterolytic activities towards serine proteinases involved in blood coagulation and clot lysis, Farm. Ed. Sci. 41:464 (1986).Google Scholar
  40. 40.
    S.W. Oweida, D.N. Ku, A.B. Lamsden, C.M. Kam, and J.C. Powers, In vivo determination of the anticoagulant effect of a substituted isocoumarin (ACITIC),Thromb. Res. 58: 191 (1990).Google Scholar
  41. 41.
    A. Mor, J. Maillard, C. Favreau, and M. Reboud-Ravauz, Reaction of thrombin and proteinases of the fibrinolytic system with a mechanism-based inhibitor, 3,4-dihydro-3-benzyl-6-chloromethylcoumarin, Biochim. Biophys. Acta 1038: 119 (1990).Google Scholar
  42. 42.
    M.K. Nishijima, J. Takezawa, N. Taenaka, Y. Shimada, and I. Yoshiya, Application of HPLC measurement of plasma concentration of gabexate esilate, Thromb. Res. 31: 279 (1983).Google Scholar
  43. 43.
    B. Oedekovan, R. Bey, K. Mottaghy, and H. Schmid-Schönberg, Gabexate mesilate (FOY’) as an anticoagulant in extracorporeal circulation in dogs and sheep, Thrombos. Haemostas. 52: 329 (1984).Google Scholar
  44. 44.
    H. Olmo, J. Kamnayashi, S.W. Chang, and G. Kosaki, FOY: (Ethyl p-(6guanidinohexanoyloxy)benzoate) methanesulfonate as a serine proteinase inhibitor. II. In vivo effect on coagulo-fibrinolytic system in comparison with heparin or aprotonin, Thromb. Res. 24: 445 (1981).Google Scholar
  45. 45.
    H. Olmo, G. Kosaki, J. Kambayashi, S. Imaoka, and F. Hirata, FOY:(Ethyl p-(6guanidinohexanoyloxy)benzoate) methanesulfonate as a serine proteinase inhibitor. I. Inhibition of thrombin and factor Xa in vitro, Thromb. Res. 19: 579 (1980).Google Scholar
  46. 46.
    S.V. Pizzo, A.D. Turner, N.A. Porter, and S.L. Gonias, Evaluation of p-amidinophenyl esters as potential antithrombotic agents, Thrombos. Haemostas. 56: 387 (1986).Google Scholar
  47. 47.
    Y. Hitomi, N. Ikari, and S. Fujii, Inhibitory effect of a new synthetic protease inhibitor (FUT-175) on the coagulation system, Haemostasis 15: 164 (1985).PubMedGoogle Scholar
  48. 48.
    Y. Koshiyama, A. Kobori, M. Oginara, Y. Yokomoto, K. Ohtari, K. Shimamaura, and M. Iwaki, The effects of FUT-175 (nafamostat mesilate) on blood coagulation and experimental disseminated intravascular coagulation (DIC), Folia Pharmacol, Japan 90: 313 (1987).Google Scholar
  49. 49.
    T. Yoshikawa, M. Murakami, Y. Furukawa, H. Kato, S. Takemura, and M. Kondo, Effects of FUT-175, a new synthetic protease inhibitor, on endotoxininduced disseminated intravascular coagulation in rats, Haemostasis 13: 374 (1983).PubMedGoogle Scholar
  50. 50.
    H. Ikoma, K. Ohtsu, Y. Tamao, R. Kikumoto, and S. Okamoto, Effect of a potent thrombin inhibitor, MCI 9038, on novel experimental arterial thrombosis, Blood & Vessel 13: 72 (1982).Google Scholar
  51. 51.
    S. Nagano, S. Okamoto, K. Ikezawa, K. Mimura, A. Matsuoka, A. Hijikata, and Y. Tamao, Fluorescence studies on the mode of action of two synthetic thrombin inhibitors, No.206 and No.805, Thrombos. Haemostas. 46:(1981) 45 (Abstr. 0128).Google Scholar
  52. 52.
    K. Oda, K. Ohtsu, R. Tamao, R. Kikumoto, A. Hijikata, K. Kinjo, and S. Okamoto, Comparison of plasma levels and excretory routes between No.189 and No.407, potent thrombin inhibitors, Kobe J. Med. Sci. 26: 11 (1980).Google Scholar
  53. 53.
    K. Ohtsu, Y. Tamao, R. Kikumoto, K. Ikezawa, A. Hijikata, and S. Okamoto, Effects of a potent thrombin inhibitor No. 407, on DIC models, Kobe J. Med. Sci. 6: 61 (1980).Google Scholar
  54. 54.
    B. Kaiser, J. Hauptmann, A. Weiß, and F. Markwardt, Pharmacological characterization of a new highly effective synthetic thrombin inhibitor. Biomed. Biochim. Acta 44: 1201 (1985).PubMedGoogle Scholar
  55. 55.
    F. Markwardt, J. Hauptmann, M. Richter, and P. Richter, Tierexexperimentelle untersuchungen zur Pharmakokinetik von 4-Amidinopheny-l-brenztraubensäure (APPA), Pharmazie 34: 178 (1979).PubMedGoogle Scholar
  56. 55.
    F. Markwardt, A. Hoffmann, and J. Stürzebecher J, Influence of thrombin inhibitors on the thrombin-induced activation of human blood platelets, Haemostasis 13: 227 (1983).PubMedGoogle Scholar
  57. 56.
    C. Mattsson, E. Eriksson, and s. Nilsson, Anticoagulant and antithrombotic effects of some protease inhibitors, Folia Haematol. (Lpz.) 109: 43 (1982).Google Scholar
  58. 57.
    B. Kaiser, J. Hauptmann, and F. Marktwardt, Studies on toxicity and pharmacokinetics of the synthetic thrombin inhibitor D-phenylalanyl-L-prolylL-arginine nitrile, Pharmazie 46: 131 (1991).PubMedGoogle Scholar
  59. 58.
    B. Kaiser, M. Richter, J. Hauptmann, and F. Markwardt, Anticoagulant and antithrombotic action of the synthetic thrombin inhibitor D-phenylalanyl-L-prolylL-arginine nitrile, Pharmazie 46: 128 (1991).PubMedGoogle Scholar
  60. 59.
    G.M. Kam, K. Fujikawa, and J.C. Powers, Mechanism-based isocoumarin hibitors for trypsin and blood coagulation serine proteases: New anticoagulants, Biochemistry 27: 2547 (1988).PubMedGoogle Scholar
  61. 60.
    J. Hauptmann, Degradation of a benzamidine-type synthetic inhibitor of coagulation enzymes in plasma of various species, Thromb. Res. 61: 279 (1991).Google Scholar
  62. 61.
    W.B. Lawson, V.B. Valenty, J.D. Wos, and A.P. Lobo, Studies on the inhibition of human thrombin: Effects of plasma and plasma constituents, Folia Haematol. (Lpz.) 109: 52 (1992).Google Scholar
  63. 62.
    D. Green, C-H. Ts’ao, N. Reynolds, D. Kahn, H. Kohl, and I. Cohn, In vitro studies of a new synthetic thrombin inhibitor, Thromb. Res. 37: 145 (1985).Google Scholar
  64. 63.
    J. Hauptmann, B. Kaiser, and F. Markwardt, Anticoagulant action of synthetic tight binding inhibitors of thrombin in vitro and in vivo, Thromb. Res. 39: 771Google Scholar
  65. 64.
    M. Niwa, C. Niwa, R. Yamagashi, S. Kondo, K. Takahashi, and N. Sakuragawa, The comparative study on the anticoagulant activities of the synthetic thrombin inhibitor (MD-805) and heparin, Blood & Vessel 16: 421 (1985).Google Scholar
  66. 65.
    H. Sato, and A. Nakajima, Kinetic study of the initial stage of the fibrinogen-fibrin conversion by thrombin. (III) Effects of competitive inhibitors, Thromb. Res. 37: 327 (1985).Google Scholar
  67. 66.
    A. Hijikata-Okunomiya, S. Okamoto, and K. Wanaka, Effect of a synthetic thrombin-inhibitor MD 605 on the reaction between thrombin and plasma antithrombin-III, Thromb. Res. 59: 967 (1990).Google Scholar
  68. 67.
    A.P. Bode, and D.T. Miller, The use of thrombin inhibitors and aprotinin in the preservation of platelets stored for transfusion, J. Lab. Clin. Med. 113: 753 (1989).PubMedGoogle Scholar
  69. 68.
    E. Glusa, A. Hoffmann, and F. Markwardt, Influence of benzamidine derivatives on thrombin-induced platelet reactions, Folia Haematol. (Lpz.) 109: 86 (1982).Google Scholar
  70. 69.
    N.J. Greco, T.E. Tenner, and N.N. Tendon, PPACK-thrombin inhibits thrombin-induced platelet aggregation and cytoplasmic acidification, but does not inhibit platelet shape change, Blood 75: 1983 (1990).Google Scholar
  71. 70.
    S.R. Hanson, and L.A. Harker, Interruption of acute platelet-dependent thrombosis by the synthetic antithrombin D-pheny-L-alanyl-L-prolyl-L-arginyl chloromethyl ketone, Proc. Natl. Acad. Sci. USA 85: 3184 (1986).Google Scholar
  72. 71.
    H. Hara, Y. Tamao, R. Kikumoto, Y. Funahara, A. Hijikata, and S. Okamoto, Effect of a potent thrombin inhibitor, No. 407, on platelet function in vitro and in vivo, Kobe J. Med. Sci. 26: 47 (1980).Google Scholar
  73. 72.
    I-K. Jang, H.K. Gold, A.A. Ziskind, R.C. Leinbach, J.T. Fallon, and Collen, Prevention of platelet-rich arterial thrombosis by selective thrombin inhibition, Circulation 81: 219 (1990).PubMedGoogle Scholar
  74. 73.
    F. Markwardt, A. Hoffmann, and J. Stürzebecher, Influence of thrombin inhibitors on the thrombin-induced activation of human blood platelets, Haemostasis 13: 227 (1983).PubMedGoogle Scholar
  75. 74.
    T. Matsuo, K. Nakao, T. Yamada, and O. Matsuo, Effect of a net anticoagulant (MD 805) on platelet activation in the hemodialysis circuit, Thromb. Res. 41: 33 (1986).Google Scholar
  76. 75.
    E. Tremoli, P. Maderna, S. Colli, E. Agradi, A. Petroni, and R. Paoletti, GYKI 14,451, a synthetic tripeptide inhibitor of thrombin: activity on platelet aggregation and arachidonic acid metabolism, Pharmacol. Res. Commun. 13: 339 (1981).Google Scholar
  77. 76.
    E. Pearlstein, C. Ambrogio, G. Gasic, and S. Karpatkin, Inhibition of the platelet-aggregating activity of two human adenocarcinomas of the colon and an anaplastic murine tumor with a specific thrombin inhibitor, dansylarginine N-(3-ethyl-1,5pentanediyl)-amide, Cancer Res. 41: 4535 (1981).PubMedGoogle Scholar
  78. 77.
    M. A. Packham, N. L. Bryant, M. A. Guccione, Agglutination of rabbit platelets in plasma by the thrombin inhibitor D-phenylalanyl-L-prolyl-L-arginyl chloromethyl ketone, Thrombos. Haemostas. 63: 282 (1990).Google Scholar
  79. 78.
    M.W.C. Hatton, and S.L. Moar, Comparative behavior of thrombin and an inactive derivative, FPR-thrombin, toward the rabbit vascular endothelium. Heparin liberates FPR-thrombin from the endothelium in vivo, Circulat. Res. 7: 221 (1990).Google Scholar
  80. 79.
    N. Gilboa, and J.W. Fenton II, Inhibition of tissue plasminogen activator (TPA) by protein or synthetic thrombin inhibitors, Ann. N. Y. Acad. Sci. 485: 414 (1986).Google Scholar
  81. 80.
    N. Gilboa, G.B. Villanueva, and J.W. Fenton II, Inhibition of fibrinolytic enzymes by thrombin inhibitors, Enzyme 40: 144 (1988).PubMedGoogle Scholar
  82. 81.
    M.A. Mohler, C.J. Refino, S.A. Chen, A.B. Chen, and A.J. Hotchkiss, D-PhePro-Arg-chloromethylketone: Its potential use in inhibiting the formation of in vitro artifacts in blood collected during tissue-type plasminogen activator thrombolytic therapy, Thrombos. Haemostas. 56: 160 (1986).Google Scholar
  83. 82.
    E. Seifried, and P. Tanswell, Comparison of specific antibody, D-Phe-Pro-ArgCHZC1 and aprotinin for prevention of in vitro effects of recombinant tissue plasminogen activator on haemostasis parameters. Thrombos. Haemostas. 58: 921 (1987).Google Scholar
  84. 83.
    Y. Tamao, T. Yamamoto, R. Kikumoto, H. Hara, J. Itoh, T. Hirata, K. Mineo, and S. Okamoto, Effect of a selective thrombin inhibitor MCI-9093 on fibrinolysis in vitro and in vivo, Thrombos. Haemostas. 56: 28 (1986).Google Scholar
  85. 84.
    J. Hauptmann, B. Kaiser, G. Nowak, J. Stürzebecher, and F. Markwardt F. Comparison of the anticoagulant and antithrombotic effects of synthetic thrombin and factor Xa inhibitors, Thrombos. Haemostas. 63: 220 (1990).Google Scholar
  86. 85.
    J. Stürzebecher, U. Stürzebecher, H. Vieweg, G. Wagner, J. Hauptmann, and F. Markwardt, Synthetic inhibitors of factor Xa and thrombin. Comparison of their anticoagulant efficiency, Thromb. Res. 54: 242 (1989).Google Scholar
  87. 86.
    B. Kaiser, J. Hauptmann, and F. Markwardt, Ontersuchungen zur Pharmakodynamik synthetischer Thrombininhibitoren vom Typ basisch substituierter N -arylsulfonylierter Phenylalaninamide, Pharmazie 42: 119 (1987).PubMedGoogle Scholar
  88. 87.
    S. Okamoto, A. Hijikata, K. Ikezawa, E. Mori, R. Kikumoto, Y. Tamao, K. Ohkubo, T. Texuka, and S. Tonomura, Structure-activity relationship in a series of synthetic thrombin inhibitors: No.205, No.407 and No.700, Blood & Vessel 11: 230 (1980).Google Scholar
  89. 88.
    C.L. Litterst, Acute and subchronic toxicity of the protease inhibitor Na-tosyl-Llysyl-chloromethylketone (TLCK) in mice, Drug and Chemical Toxicol. 3: 227 (1980).Google Scholar
  90. 89.
    A. Hijikata-Okunomiya, H. Kitaguchi, and M. Hirata, Effect of MD-805 on plasminogen activator release by thrombin from isolated perfused dog leg, Thromb. Res. 45: 699 (1987).Google Scholar
  91. 90.
    H-P. Klöcking, A. Hoffmann, and F. Markwardt, Influence of a-NAPAP on thrombin-induced release of plasminogen activator, Thromb. Res. 52: 71 (1968).Google Scholar
  92. 91.
    M. Mild, K. Ogawa, M. Hirata, H. Kitaguchi, and Y. Funahara, Prostacyclin release from the coronary vascular wall by vasoactive substances, Thromb. Res. 35: 665 (1984).Google Scholar
  93. 92.
    E. Glusa, and U. Wolfram, The contractile response of vascular smooth muscle to thrombin and its inhibition by thrombin inhibitors, Folia Haematol. (Lpz.) 115: 94 (1988).Google Scholar
  94. 93.
    D.D. Ku, Unmasking of thrombin vasoconstriction in isolated perfused dog hearts after intracoronary infusion of air embolus, J. Pharm. Exp. Ther. 243: 571 (1987).Google Scholar
  95. 94.
    K. Nakamura, Y. Hatano, and K. Mori, Thrombin-induced vasoconstriction in isolated cerebral arteries and the influence of a synthetic thrombin inhibitor, Thromb. Res. 40: 715 (1985).Google Scholar
  96. 95.
    M. Melzig, C. Harme, E. Teuscher, B. Voigt, and G. Wagner, Influence of inhibitors of thrombin on porcine aortic smooth muscle cells in primary culture, Biomed. Biochim. Acta 45: 1199 (1986).Google Scholar
  97. 96.
    L.E. Ostrowski, A. Ahsen, B.P. Suthar, P. Pagast, D.L. Bain, C. Wong, A. Patel, and R.M. Schultz, Selective inhibition of proteolytic enzymes in an in vivo mouse model for experimental metastasis, Cancer Res. 46: 4121 (1986).PubMedGoogle Scholar
  98. 97.
    W.K.W. Ho, K. Nakao, and S. Shibata, The inhibitory action of two thrombin inhibitors (TI-189 and TI-233) on the contractile response to 5-hydroxytryptamine and prostaglandin endoperoxide analogue (U-44069) in isolated vascular strips, Brit. J. Pharmacol. 71: 399 (1990).Google Scholar
  99. 98.
    H. Karaki, K. Murakami, N. Nakagawa, U. Orakawa, The inhibitory effect of N2dansyl-L-arginine-4-t-butylpiperidide amide (TI 233) on contraction of vascular and intestinal smooth muscle, Brit. J. Pharmacol. 80: 519 (1983).Google Scholar
  100. 99.
    J. Hauptmann, and B. Kaiser, In vitro and in vivo comparison of arginine-and benzamidine-derived highly potent synthetic thrombin inhibitors, Pharmazie 46: 57 (1991).PubMedGoogle Scholar
  101. 100.
    T. Matsuo, and K. Nakao, Plasma antithrombin activity of MD 805 determined by chromogenic substrate during hemodialysis, Blood and Vessel 18:378 -(1987).Google Scholar
  102. 101.
    J. Hauptmann, F. Markwardt, and M. Richter, Tierexperimentelle Untersuchungen zur Pharmakokinetik von Na-Tosyl-3-amidino-phenyl-alaninpiperidid (TAPAP), einem neuen Thrombininhibitor, Pharmazie 37: 430 (1962).Google Scholar
  103. 102.
    F. Markwardt, M. Richter, and G. Vogel, Zur Pharmakokinetik von 4-Amidinophenylbrenztraubensäure, einem neuen synthetischer, Thrombinhemmstoff. Zbl. Pharm. 113: 787 (1974).Google Scholar
  104. 103.
    M. Paintz, M. Richter, and J. Hauptmann, HPLC-determination of the synthetic thrombin inhibitor Na-(2-naphthylsulfonylglycyl)-4-amidino-phenylalanine piperidide in biological material,Pharmazie 42: 346 (1987).Google Scholar
  105. 104.
    E. Tremoli, G. Morazzoni, P. Maderna, S. Colli, and R. Paoletti, Studies on the antithrombotic action of BOC-D-Phe-Pro-ArgH (GYKI14,451), Thromb. Res. 23: 549 (1981).Google Scholar
  106. 105.
    J. Hauptmann, B. Kaiser, M. Paints, and F. Markwardt, Biliary excretion of synthetic benzamidine-type thrombin inhibitors in rats, Biomed. Biochim. Acta 46: 445 (1987).Google Scholar
  107. 106.
    B. Clement, and M. Zimmermann, Characteristics of the microsomal N-hydroxylation of benzamidine to benzamidoxime, Xenobiotika 17: 659 (1987).Google Scholar
  108. 107.
    J. Hauptmann, M. Paintz, B. Kaiser, and M. Richter, Reduction of a benzamidoxime derivative to the corresponding benzamidine in vivo and in vitro, Pharmazie 43: 559 (1988).PubMedGoogle Scholar
  109. 108.
    J. Hauptmann, B. Kaiser, M. Paintz, and F. Markwardt, Pharmacological characterization of a new structural variant of 4-amidinophenylalanine amide-type synthetic thrombin inhibitor, Pharmazie 44: 282 (1989).PubMedGoogle Scholar
  110. 109.
    B. Kaiser, and F. Markwardt, Antithrombotic and haemorrhagic effects of synthetic and naturally occurring thrombin inhibitors, Thromb. Res. 43: 613 (1986).Google Scholar
  111. 107.
    J. Hauptmann, B. Kaiser, M. Paintz, and F. Markwardt, Pharmacological characterization of a new structural variant of 4-amidino-phenyl-alanine amide-type synthetic thrombin inhibitor, Pharmazie 44: 282 (1989).PubMedGoogle Scholar
  112. 110.
    C.N. Vogel, H.S. Kingdon, and R.L. Lundblad, Correlation of in vivo and in vitro inhibition of thrombin by plasma inhibitors, J. Lab. Clin. Med. 93: 661 (1979).PubMedGoogle Scholar
  113. 111.
    M.A. Shifmann, and S.V, In vivo metabolism of reversibly inhibited-thrombin, Biochem. Pharmacol. 32: 138 (1983).Google Scholar
  114. 112.
    T. Kumada, and Y. Abiko, Comparative study on heparin and a synthetic thrombin inhibitor No. 805 (MD-805) in experimental antithrombin III-deficient animals, Thromb. Res. 24: 285 (1981).Google Scholar
  115. 113.
    T. Yamamoto, T. Hirata, M. Inagaki, R. Kikumoto, Y. Tamao and S. Okamoto, Effect of MCI-9038, a selective thrombin inhibitor on cerebral microcirculation after cerebral ischemia in rats, Thrombos. Haemostas. 58: 108 (Abstr. 362) (1967).Google Scholar
  116. 114.
    R.C. Schaeffer, C. Briston, S-M. Chilton, and R.W. Carlson, Disseminated intravascular coagulation following Echis carinatus venom in dogs: Effects of a synthetic thrombin inhibitor, J. Lab. Clin. Med. 107: 488 (1986).PubMedGoogle Scholar
  117. 115.
    R.C. Schaeffer, S-M. Chilton, T.J. Hadden, and R.W. Carlson, Pulmonary fibrin microembolism with Echis carinatus venom in dogs: effects of a synthetic thrombin inihibitor, J. Appl. Physiol. 57: 1824 (1984).PubMedGoogle Scholar
  118. 116.
    A.B. Kelly, S.R. Hanson, L.W. Henderson, and L.A. Harker, Prevention of heparin-resistant thrombotic occlusion of hollow-fiber hemodialyzers by synthetic antithrombin, J. Lab. Clin. Med. 114: 411 (1989).PubMedGoogle Scholar
  119. 117.
    W.C. Krupski, A. Bass, A.B. Kelly, U.M. Marzec, S.R. Hanson, and L.A. Harker, Heparin-resistant thrombus formation by endovascular stents in baboons. Interruption by a synthetic antithrombin, Circulation 82: 570 (1990).Google Scholar
  120. 118.
    I.J.K. Jang, H.K. Gold, R.C. Leinbach, J.T. Fallon, and D. Collen, In vivo thrombin inhibition enhances and sustains arterial recanalization with recombinant tissue-type plasminogen activator, Circulat. Res. 67: 1552 (1990).Google Scholar
  121. 119.
    M.J. Mellott, T.M. Conolly, S.J. York, and L.R. Bush, Prevention of reocclusion by MCI-9038, a thrombin inhibitor, following t-PA induced thrombolysis in a canine model of femoral arterial thrombosis, Thromb. Haemostas. 64: 526 (1990).Google Scholar
  122. 120.
    K. Ikezawa, T.Yamashita, S. Okamoto, T. Ohara, K. Takemoto, A. Matsuoka, Improvement of the F VIII:C chromogenic method using the specific synthetic thrombin inhibitors, I-2581 and MD-805, Blood & Vessel 16: 418 (1985).Google Scholar
  123. 121.
    S. Okamoto, S. Ikezawa, A. Nagano, A. Matsuoka, Y. Hijikata, and Y. Tamao, Selectivity increase of chromogenic assay of factor Xa by use of highly selective synthetic thrombin inhibitor having extremely potent stereostructure (No.605), Thrombos. Haemostas. 46: 313 (Abstr. 0976) (1981).Google Scholar
  124. 122.
    J. Stürzebecher, and C. Klessen, Einsatz von synthetischen Inhibitoren bei gerinnungsphysiologischen Tests mit Peptidsubstraten, Folia Haematol. (Lpz). 109: 157 (1982).Google Scholar
  125. 123.
    L. Svendsen, M. Brogli, G. Lindeberg, and K. Stocker K, Differentiation of thrombin-and factor Xa-related amidolytic activity in plasma by means of a synthetic thrombin inhibitor, Thromb. Res. 34: 457 (1984).Google Scholar
  126. 124.
    A. Hijikata-Okunomiya, A new method for the determination of prothrombin in human plasma, Thromb. Res. 57: 705 (1990).Google Scholar
  127. 125.
    M. Hiraishi, Z. Yamasaki, and K. Ichikawa, Plasma collection using nafamostat mesilate and dipyridamole as an anticoagulant, Int. J. Artif. Organs 11: 212 (1988).PubMedGoogle Scholar
  128. 126.
    M.L. Rand, J. Neiman, D.M. Jakowec, and M.A. Packham, Effects of alcohol withdrawal from alcoholics - a study using platelet-rich plasma from blood anticoagulated with D-phenylalanyl-L-prolyl-L-arginyl chloromethyl ketone (FPRCHZC1), Thrombos. Haemostas. 63: 178 (1990).Google Scholar
  129. 127.
    P. Stein, and J. Drawert, Anwendung eines 4-Amidinophenylbrenztraubensäure-Heparin-Stabilisators zur zitratfreien Stabilisierung von Blut, Dtsch. Ges. Wesen. 38: 748 (1983).Google Scholar
  130. 128.
    T. Matsuo, Y. Chikahira, and Y. Yamada, Effect of synthetic thrombin inhibitor (MD 805) as an alternative drug on heparin-induced thrombocytopenia during hemodialysis, Thromb. Res. 52: 165 (1988).Google Scholar
  131. 129.
    T. Matsuo, T. Yamada, T. Yamanashi, R. Ryo R, Anticoagulant therapy with MD 805 of a hemodialysis patient with heparin-induced thrombocytopenia, Thromb. Res. 58: 663 (1990).Google Scholar
  132. 130.
    P.R. Eisenberg, Role of new anticoagulants as adjunctive therapy during thrombolysis, Amer. J. Cardiol. 67: A19 (1991).Google Scholar
  133. 131.
    H.K. Gold, I.K. Jang, R.C. Leinbach, J.E. McLary, J.T. Fallon, D. Collen, Acceleration of reperfusion by combination of rt-PA and a selective thrombin inhibitor, argatroban, Fibrinolysis Suppl. 3: 15 (Abstr. 40) (1990).Google Scholar
  134. 132.
    T. Yasuda, H.K. Gold, H. Yaoita, R.C. Leinbach, J.L. Guerrero, I-K. Jang, R. Holt, J.T. Fallon, and D. Collen, Comparative effects of aspirin - synthetic thrombin inhibitor and a monoclonal antiplatelet glycoprotein Ilb/IIIa antibody on coronary artery reperfusion, reocclusion and bleeding with recombinant tissue-type plasminogen activator in a canine preparation, J. Amer. Coll. Cardiol. 16: 714 (1990).Google Scholar
  135. 133.
    I. Weitz, M. Hudoba, D. Massel, J. Maraganore, and J. Hirsh J, Clot-bound thrombin is protected from inhibition by heparin-antithrombin III but is susceptible to inactivation by antithrombin III-independent inhibitors, J. Clin. Invest. 86: 385 (1990).PubMedGoogle Scholar
  136. 134.
    A.B. Kelly, Y. Cadroy, O.M. Marzec, C.M. Hanson, and L.A. Harker, Comparison of antithrombotic and antihemostatic effects produced by antithrombins in primate models of arterial thrombosis, Thrombos. Haemostas. 62: 42 (Abstr. 93) (1989).Google Scholar
  137. 135.
    J. Hauptmann, E. Brüggener, and F. Markwardt, Effect of heparin, hirudin, and a synthetic thrombin inhibitor on antithrombin III in thrombin-induced disseminated intravascular coagulation in rats, Haemostasis 17: 321 (1987).PubMedGoogle Scholar
  138. 136.
    C.G. Binnie, B.W. Erickson, and J. Hermans, Inhibition of thrombin by synthetic hirudin peptides, FEBS Lett. 270: 85 (1990).PubMedGoogle Scholar
  139. 137.
    J.A. Jakubowski, and J.M. Maraganore, Inhibition of coagulation and thrombin induced platelet activities by a synthetic dodecapeptide modeled on the carboxyterminus of hirudin, Blood 75: 399 (1990).PubMedGoogle Scholar
  140. 138.
    X.J. Yang, M.A. Blajchman, S. Craven, L.M. Smith, N. Anvari, and F.A. Ofosu, Activation of factor V during intrinsic and extrinsic coagulation. Inhibition by heparin, hirudin and D-Phe-Pro-Arg-CHZC1, Biochem. J. 272: 399 (1990).PubMedGoogle Scholar
  141. 138.
    J.M. Maraganore, P. Bourdon, J. Jablonski, K.L. Ramachandran, and J.W. Fenton II, Design and characterization of hirulogs: A novel class of bivalent peptide inhibitors of thrombin, Biochemistry 29: 7095 (1990).PubMedGoogle Scholar
  142. 139.
    J. Hauptmann, A. Barth, F-P. Schönberger, and F. Markwardt, Comparative study on the antithrombotic effects of a synthetic thrombin inhibitor and of heparin in animal models, Biomed. Biochim. Acta 42: 959 (1983).Google Scholar
  143. 140.
    B. Kaiser, and F. Markwardt, Experimental studies on the antithrombotic action of a highly effective synthetic thrombin inhibitor, Thrombos. Haemostas. 55: 194 (1986).Google Scholar
  144. 141.
    K. Krupinski, K.N. Breddin, F. Markwardt, and W. Haarmann, Antithrombotic effects of three thrombin inhibitors in a rat model of laser-induced thrombosis, Haemostasis 19: 74 (1989).PubMedGoogle Scholar
  145. 142.
    J.F. Eidt, P. Allison, S. Noble,J. Ashton, P. Golino, J. McNatt, L.M. Buja, and J.T. Willerson, Thrombin is an important mediator of platelet aggregation in stenosed canine coronary arteries with endothelial injury, J. Clin. Invest. 84: 18 (1989).PubMedGoogle Scholar
  146. 143.
    H. Hara, Y. Tamao, R. Kikumoto, and S. Okamoto S, Effect of a synthetic thrombin inhibitor MCI-9038 on experimental models of disseminated intravascular coagulation in rabbits, Thrombos. Haemostas. 57: 165 (1987).Google Scholar
  147. 144.
    T. Yoshikawa, Y. Furukawa, M. Murakami, S. Takemura, and M. Kondo, Protective effect of Gabexate mesilate against experimental disseminated intravascular coagulation in rats, Haemostasis 13: 262 (1983).PubMedGoogle Scholar
  148. 145.
    G. Vogel, R. Huyke, and I. Heerklotz, Erste klinische Erfahrungen mit dem kleinmolekularen synthetischen Thrombininhibitor 4- amidino-phenylbrenztraubensäure (APPA), Folia Haematol. (Lpz.). 104: 785 (1977).Google Scholar
  149. 146.
    K. Kumon, K. Tanaka, N. Nakajima, Y. Naito, and T. Fujita, Anticoagulation with a synthetic thrombin inhibitor after cardiovascular surgery and for treatment of disseminated intravascular coagulation, Critical Care Med. 12: 1039 (1884).Google Scholar
  150. 147.
    T. Ohshiro, J. Kambayashi, and G. Kosaki, Antithrombotic therapy of patient with peripheral arterial reconstruction - clinical study on MD-805, Blood & Vessel 14: 216 (1983).Google Scholar
  151. 148.
    K. Yamada, A clinical trial of MD-605, a synthetic thrombin inhibitor. Bibliotheca Haematol. (Basel) 49: 343 (1983).Google Scholar
  152. 149.
    S. Kobayashi, M. Kitani, S. Yamaguchi, T. Suzuki, K. Okada, and T. Tsunematsu, Effects of an antithrombotic agent (MD-805) or progressing cerebral thrombosis, Thromb. Res. 3: 305 (1969).Google Scholar
  153. 150.
    N. Taenaka, Y. Shimada, M. Kawai, I. Yoshiya, and G. Kosaki, Survival from DIC following amniotic fluid embolism - successful treatment with a serine proteinase inhibitor - FOY, Anaesthesia 36: 389 (1981).PubMedGoogle Scholar
  154. 151.
    N. Taenaka, Y. Shimada, T. Hirata, M. Nishijima, and I. Yoshiya, New approach to regional anticoagulation in hemodialysis using gabexate mesilate (FOY), Crit. Care Med. 10: 773 (1982).Google Scholar
  155. 152.
    G. Kosaki, J. Kambayashi, and S. Imaoka, Application of a synthetic serine protease inhibitor in the treatment of DIC, Bibliotheca Haematol. (Basel) 49: 317 (1983).Google Scholar
  156. 153.
    G. Palareti, M. Maccaferri, M. Poggi, F. Petrini, S. Coccheri, F. Haverkate, F. Montanari, and A.S. Corticelli, Effects of gabexate mesilate (FOY), a new synthetic serine protease inhibitor on blood coagulation in patients with DIC, Thrombos. Haemostas. 58: 420 (Abstr. 1544) (1987).Google Scholar
  157. 154.
    S. Umeki, M. Adachi, and M. Watanabe, Gabexate as a therapy for disseminated intravascular coagulation, Arch. Intern. Med. 148: 1409 (1968).Google Scholar
  158. 155.
    K. Tanaka, M. Takao, J. Yada, H. Yuasa, M. Kusagawa, and K. Deguchi, Application of gabexate mesilate (FOY) for open heart surgery. Blood & Vessel 19: 612 (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • F. Markwardt
    • 1
  • J. Hauptmann
    • 1
  1. 1.Institute of Pharmacology and ToxicologyMedical Academy ErfurtFederal Republic of Germany

Personalised recommendations