Skip to main content

Part of the book series: Physics of Solids and Liquids ((PSLI))

Abstract

Physicists and mathematicians have long thought about the way motions and relationships would change in systems with dimensionality different from that of the three-dimensional space we are accustomed to. Over the past decades it has become possible to fabricate structures that exhibit reduced dimensionality, and the subject of this book deals largely with systems that already exist. Reduced dimensionality can arise in many different ways, depending on the physical processes being considered, and usually involves a sample or a physically defined region within a sample with one or more dimensions small compared to an appropriate physical scale length.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Ando, A. B. Fowler, and F. Stern, Electronic properties of two-dimensional systems, Rev. Mod. Phys. 54, 437–672 (1982).

    Article  ADS  Google Scholar 

  2. H. Sakaki, Scattering suppression and high-mobility effect of size-quantized electrons in ultrafine semiconductor wire structures, Jpn. J. Appl. Phys. 19, L735–L738 (1980).

    Article  ADS  Google Scholar 

  3. K. Kash, R. Bhat, D. D. Mahoney, P. S. D. Lin, A. Scherer, J. M. Worlock, B. P. Van der Gaag, M. Koza, and P. Grabbe, Strain-induced confinement of carriers to quantum wires and dots within an InGaAs-InP quantum well, Appl. Phys. Lett. 55, 681–683 (1989).

    Article  ADS  Google Scholar 

  4. K. Kash, Optical properties of III-V semiconductor quantum wires and dots, J. Lumin. 46, 69–82 (1990).

    Article  Google Scholar 

  5. U. Mackens, D. Heitmann, L. Prager, J. P. Kotthaus, and W. Beinvogl, Mini-gaps in the plasmon dispersion of a two-dimensional electron gas with spatially modulated charge density, Phys. Rev. Lett. 53, 1485–1488 (1984).

    Article  ADS  Google Scholar 

  6. A. C. Warren, D. A. Antoniadis, and H. I. Smith, Quasi one-dimensional conduction in multiple, Parallel inversion lines, Phys. Rev. Lett. 56, 1858–1861 (1986).

    Article  ADS  Google Scholar 

  7. K. Ismail, W. Chu, A. Yen, D. A. Antoniadis, and H. I. Smith, Negative trans-conductance and negative differential resistance in a grid-gate modulation-doped field-effect transistor, Appl. Phys. Lett. 54, 460–462 (1989).

    Article  ADS  Google Scholar 

  8. M. V. Krasheninnikov and A. V. Chaplik, Two-dimensional plasma waves in super-lattices, Fiz. Tekh. Poluprovodn. 15, 32–39 (1981) [Sov. Phys. Semicond. 15, 19-23 (1981)].

    Google Scholar 

  9. M. J. Kelly, The two-dimensional electron gas subject to a weak periodic potential, J. Phys. C: Solid State Phys. 18, 6341–6353 (1985).

    Article  ADS  Google Scholar 

  10. C. Dahl, Plasmons in periodically modulated inversion layers, Phys. Rev. B 41, 5763–5769 (1990).

    Article  ADS  Google Scholar 

  11. D. J. BenDaniel and C. B. Duke, Space-charge effects on electron tunneling, Phys. Rev. 152, 683–692 (1966).

    Article  ADS  Google Scholar 

  12. A. Ya Shik, Calculations relating to a semiconductor structure with a quasi-one-dimensional electron gas, Fiz. Tekh. Poluprovodn. 19, 1488–1491 (1985) [Sov. Phys. Semicond. 19, 915-917 (1985)].

    Google Scholar 

  13. J. H. Davies, Electronic states in narrow semiconducting wires near threshold, Semicond. Sci. Technol. 3, 995–1009 (1988).

    Article  ADS  Google Scholar 

  14. V. B. Shikin, Conductivity of a quasi-one-dimensional channel in the ballistic regime, Pis’ma Zh. Eksp. Teor. Fiz. 50, 150–152 (1989) [JETP Lett. 50, 167-170 (1989)].

    Google Scholar 

  15. J. A. Brum and G. Bastard, Energy levels and magneto-electric subbands in some quasi-uni-dimensional semiconductor heterostructures, Superlattices and Microstructures 4, 443–448 (1988).

    Article  ADS  Google Scholar 

  16. G. Bastard, J. A. Brum, and R. Ferreira, Electronic states in semiconductor heterostructures, in: Solid State Physics (H. Ehrenreich and D. Turnbull, eds.), Vol. 44, pp. 229–415, Academic, New York (1991).

    Google Scholar 

  17. S. E. Laux and F. Stern, Electron states in narrow gate-induced channels in Si, Appl. Phys. Lett. 49, 91–93 (1986).

    Article  ADS  Google Scholar 

  18. S. E. Laux, D. J. Frank, and F. Stern, Quasi-one-dimensional electron states in a split-gate GaAs/AlGaAs heterostrueture, Surf. Sci. 196, 101–106 (1988).

    Article  ADS  Google Scholar 

  19. K. Kojima, K. Mitsunaga, and K. Kyuma, Calculation of two-dimensional quantumconfined structures using the finite element method, Appl. Phys. Lett. 55, 862–864 (1989).

    ADS  Google Scholar 

  20. S. E. Laux, Numerical methods for calculating self-consistent solutions of electron states in narrow channels, in: Proceedings of the Fifth International Conference on Numerical Analysis of Semiconductor Devices and Integrated Circuits (NASECODE V) (J. J. H. Miller, ed.), pp.270–275, Boole, Dublin (1987).

    Chapter  Google Scholar 

  21. T. Kerkhoven, A. T. Galick, U. Ravaioli, J. H. Arends, and Y. Saad, Efficient numerical simulation of electron states in quantum wires, J. Appl. Phys. 68, 3461–3469 (1990).

    Article  ADS  Google Scholar 

  22. T. P. Smith, III, H. Arnot, J. M. Hong, C. M. Knoedler, S. E. Laux, and H. Schmid, Capacitance oscillations in one-dimensional electron systems, Phys. Rev. Lett. 59, 2802–2805 (1987).

    Article  ADS  Google Scholar 

  23. A. J. Rimberg and R. M. Westervelt, Electron energy levels for a dense electron gas in parabolic GaAs/AlxGa1−x As quantum wells, Phys. Rev. B 40, 3970–3974 (1989).

    Article  ADS  Google Scholar 

  24. L. Brey, N. F. Johnson, and B. I. Halperin, Optical and magneto-optical absorption in parabolic quantum wells, Phys. Rev. B 40, 10647–10649 (1989).

    Article  ADS  Google Scholar 

  25. K. Karrai, X. Ying, H. D. Drew, and M. Shayegan, Collective cyclotron resonance in a quasi-three-dimensional electron gas, Phys. Rev. B 40, 12020–12023 (1989).

    Article  ADS  Google Scholar 

  26. G. W. Bryant, Electronic structure of ultrasmall quantum-well boxes, Phys. Rev. Lett. 59, 1140–1143 (1987).

    Article  ADS  Google Scholar 

  27. P. A. Maksym and T. Chakraborty, Quantum dots in a magnetic field: Role of electron-electron interactions, Phys. Rev. Lett. 65, 108–111 (1990).

    Article  ADS  Google Scholar 

  28. A. Kumar, S. E. Laux, and F. Stern, Electron states in a GaAs quantum dot in a magnetic field, Phys. Rev. B 42, 5166–5175 (1990).

    Article  ADS  Google Scholar 

  29. T. P. Smith, III, K. Y. Lee, C. M. Knoedler, J. M. Hong, and D. P. Kern, Electronic spectroscopy of zero-dimensional systems, Phys. Rev. B 38, 2172–2175 (1988).

    Article  ADS  Google Scholar 

  30. W. Hansen, T. P. Smith, III, K. Y. Lee, J. A. Brum, C. M. Knoedler, J. M. Hong, and D. P. Kern, Zeeman bifurcation of quantum-dot spectra, Phys. Rev. Lett. 62, 2168–2171 (1989).

    Article  ADS  Google Scholar 

  31. D. S. Citrin and Y.-C. Chang, Valence-subband structures of GaAs/AlxGa1−x As quantum wires: The effect of split-off bands, Phys. Rev. B 40, 5507–5514 (1989).

    Article  ADS  Google Scholar 

  32. M. Babiker, Longitudinal polar optical modes in semiconductor wells, J. Phys. C: Solid State Phys. 19, 683–697 (1986).

    Article  ADS  Google Scholar 

  33. H. Akera and T. Ando, Envelope-function formalism for phonons in heterostructures, Phys. Rev. B 40, 2914–2931 (1989).

    Article  ADS  Google Scholar 

  34. S. Rudin and T. L. Reinecke, Electron-LO-phonon scattering rates in semiconductor quantum well, Phys. Rev. B 41, 7713–7717 (1990).

    Article  ADS  Google Scholar 

  35. P. M. Mooney, Deep donor levels (DX centers) in III-V semiconductors, J. Appl. Phys. 67, R1–R26 (1990).

    Article  ADS  Google Scholar 

  36. F. Stern, Doping considerations for heterojunctions, Appl. Phys. Lett. 43, 974–976 (1983).

    Article  ADS  Google Scholar 

  37. F. Stern, Charge transfer in photoexcited AlxGa1−x As/GaAs heterojunctions, Surf. Sci. 174, 425–430 (1986).

    Article  ADS  Google Scholar 

  38. D. J. Chadi and K. J. Chang, Energetics of DX-center formation in GaAs and AlxGa1−x As alloys, Phys. Rev. B 39, 10063–10074 (1989).

    Article  ADS  Google Scholar 

  39. K. Tsubaki, H. Sakaki, J. Yoshino, and Y. Sekiguchi, Spatially modulated photoconductivity at N-AlGaAs/GaAs heterojunctions and formation of persistent charge patterns with submicron dimensions, Appl. Phys. Lett. 45, 663–665 (1984).

    Article  ADS  Google Scholar 

  40. R. Wilkins, E. Ben-Jacob, and R. C. Jaklevic, Scanning-tunneling-microscope observations of Coulomb blockade and oxide polarization in small metal droplets, Phys. Rev. Lett. 63, 801–804 (1989).

    Article  ADS  Google Scholar 

  41. R. H. Silsbee and R. C. Ashoori, Comment on “Zeeman bifurcation of quantum-dot spectra,” Phys. Rev. Lett. 64, 1991 (1990); Reply, W. Hansen, T. P. Smith, III, and K. Y. Lee, p. 1992.

    Article  ADS  Google Scholar 

  42. C. W. J. Beenakker, Theory of Coulomb-blockade oscillations in the conductance of a quantum dot, Phys. Rev. B 44, 1646–1656 (1991).

    Article  ADS  Google Scholar 

  43. W. I. Friesen and B. Bergersen, Dielectric response of a one-dimensional electron gas, J. Phys. C: Solid State Phys. 13, 6627–6640 (1980).

    Article  ADS  Google Scholar 

  44. J. Wang and J. P. Leburton, Plasmon dispersion of a quasi-one-dimensional electron gas, Phys. Rev. B 41, 7846–7849 (1990).

    Article  ADS  Google Scholar 

  45. A. Gold and A. Ghazali, Analytical results for semiconductor quantum-well wire: Plasmons, shallow impurity states, and mobility, Phys. Rev. B 41, 7626–7640 (1990).

    Article  ADS  Google Scholar 

  46. R. A. Ferrell, Possibility of one-dimensional superconductivity, Phys. Rev. Lett. 13, 330–332 (1964).

    Article  ADS  Google Scholar 

  47. V. B. Shikin, T. Demel, and D. Heitmann, Quasi-one-dimensional electron systems in semiconductors, Zh. Eksp. Teor. Phys. 96, 1406–1419 (1989) [Sov. Phys. JETP 69, 797-804 (1989)].

    Google Scholar 

  48. P. Bakshi, D. A. Broido, and K. Kempa, Electromagnetic response of quantum dots, Phys. Rev. B 42, 7416–7419 (1990).

    Article  ADS  Google Scholar 

  49. F. M. Peeters, Magneto-optics in parabolic quantum dots, Phys. Rev. B 42, 1486–1487 (1990).

    Article  ADS  Google Scholar 

  50. S. J. Allen, Jr., H. L. Störmer, and J. C. M. Hwang, Dimensional resonance of the two-dimensional electron gas in selectively doped GaAs/AlGaAs heterostructures, Phys. Rev. B 28, 4875–4877 (1983).

    Article  ADS  Google Scholar 

  51. T. Demel, D. Heitmann, P. Grambow, and K. Ploog, Nonlocal dynamic response and level crossings in quantum-dot structures, Phys. Rev. Lett. 64, 788–791 (1990).

    Article  ADS  Google Scholar 

  52. D. B. Mast, A. J. Dahm, and A. L. Fetter, Observation of bulk and edge magnetoplasmons in a two-dimensional electron fluid, Phys. Rev. Lett. 54, 1706–1709 (1985).

    Article  ADS  Google Scholar 

  53. D. C. Glattli, E. Y. Andrei, G. Deville, J. Poitrenaud, and F. I. B. Williams, Dynamical Hall effect in a two-dimensional classical plasma, Phys. Rev. Lett. 54, 1710–1713 (1985).

    Article  ADS  Google Scholar 

  54. P. Erdös and R. C. Herndon, Theories of electrons in one-dimensional disordered systems, Adv. Phys. 31, 65–163 (1982).

    Article  ADS  Google Scholar 

  55. C. Jiang, D. C. Tsui, and G. Weimann, Threshold transport of high-mobility two-dimensional electron gas in GaAs/AlGaAs heterostructures, Appl. Phys. Lett. 53, 1533–1535 (1988).

    Article  ADS  Google Scholar 

  56. A. L. Efros, Metal-non-metal transition in heterostructures with thick spacer layers, Solid State Commun. 70, 253–256 (1989).

    Article  ADS  Google Scholar 

  57. A. Gold, Mobility of the two-dimensional electron gas in AlGaAs/GaAs heterostructures at low electron densities, Appl. Phys. Lett. 54, 2100–2102 (1989).

    Article  ADS  Google Scholar 

  58. R. Landauer, Electrical transport in open and closed systems, Z. Phys. B—Condensed Matter 68, 217–228 (1987).

    Article  ADS  Google Scholar 

  59. M. Büttiker, Symmetry of electrical conduction, IBM J. Res. Develop. 32, 317–334 (1988).

    Article  Google Scholar 

  60. M. Büttiker, Transmission, reflection and the resistance of small conductors, in: Electronic Properties of Multilayers and Low-Dimensional Semiconductor Structures (J. M. Chamberlain, L. Eaves, and J. C. Portal, eds.), pp. 51–73, Plenum, New York (1990).

    Chapter  Google Scholar 

  61. G. Timp, When does a wire become an electron waveguide?, in: Nanostructured Systems (M. A. Reed, ed.) [Volume 35 of Semiconductors and Semimetals (R. K. Willardson, A. C. Beer, and E. R. Weber eds.)], pp. 113–190, Academic, New York (1992).

    Google Scholar 

  62. F. Stern and W. E. Howard, Properties of semiconductor surface inversion layers in the electric quantum limit, Phys. Rev. 163, 816–835 (1967).

    Article  ADS  Google Scholar 

  63. F. Stern, Calculated temperature dependence of mobility in silicon inversion layers, Phys. Rev. Lett. 44, 1469–1472 (1980).

    Article  ADS  Google Scholar 

  64. A. Gold and V. T. Dolgopolov, Temperature dependence of the conductivity for the two-dimensional electron gas: Analytical results for low temperatures, Phys. Rev. B 33, 1076–1084 (1986).

    Article  ADS  Google Scholar 

  65. B. J. F. Lin, D. C. Tsui, and G. Weimann, Mobility transition in the two-dimensional electron gas in GaAs-AlGaAs heterostructures, Solid State Commun. 56, 287–290 (1985).

    Article  ADS  Google Scholar 

  66. A. Kumar, S. E. Laux, and F. Stern, Channel sensitivity to gate roughness in a splitgate GaAs-AlGaAs heterostructure, Appl. Phys. Lett. 54, 1270–1271 (1989).

    Article  ADS  Google Scholar 

  67. H. van Houten, C. W. J. Beenakker, B. J. van Wees, and J. E. Mooij, Boundary scattering modified one-dimensional weak localization in submicron GaAs/AlGaAs heterostructures, Surf. Sci. 196, 144–149 (1988).

    Article  Google Scholar 

  68. J. Lee and H. N. Spector, Impurity-limited mobility of semiconducting thin wire, J. Appl. Phys. 54, 3921–3925 (1983).

    Article  ADS  Google Scholar 

  69. F. A. Riddoch and B. K. Ridley, Phonon scattering of electrons in quasi-one-dimensional quantum wells, Surf. Sci. 142, 260–265 (1984).

    Article  ADS  Google Scholar 

  70. G. Fishman, Mobility in a quasi-one-dimensional semiconductor: An analytical approach, Phys. Rev. B 34, 2394–2401 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  71. G. Fishman, Phonon-limited mobility in a quasi-one-dimensional semiconductor, Phys. Rev. B 36, 7448–7456 (1987).

    Article  ADS  Google Scholar 

  72. Y. Weng and J. P. Leburton, Impurity scattering with semiclassical screening in multi-band quasi-one-dimensional systems, J. Appl. Phys. 65, 4983–4989 (1989).

    Article  ADS  Google Scholar 

  73. S. Das Sarma and X. C. Xie, Calculated transport properties of ultrasubmicron quasi-one-dimensional inversion lines, Phys. Rev. B 35, 9875–9878 (1987).

    Article  ADS  Google Scholar 

  74. E. D. Siggia and P. C. Kwok, Properties of electrons in semiconductor inversion layers with many occupied subbands. I. Screening and impurity scattering, Phys. Rev. B 2, 1024–1036 (1970).

    Article  ADS  Google Scholar 

  75. M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, and A. E. Wetsel, Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure, Phys. Rev. Lett. 60, 535–537 (1988).

    Article  ADS  Google Scholar 

  76. G. W. Bryant, Electronic band structure of semiconductor nanostructure arrays, Phys. Rev. B 40, 1620–1629 (1989).

    Article  ADS  Google Scholar 

  77. G. C. Aers and H. C. Liu, Theory of resonant tunneling through an array of quantum dots, Solid State Commun. 73, 19–21 (1990).

    Article  ADS  Google Scholar 

  78. F. A. P. Osório, M. H. Degani, and O. Hipólito, Bound impurity in GaAs-Ga1−x AlxAs quantum-well wires, Phys. Rev. B 37, 1402–1405 (1988).

    Article  ADS  Google Scholar 

  79. J.-L. Zhu, J.-J. Xiong, and B.-L. Gu, Confined electron and hydrogenic donor states in a spherical quantum dot of GaAs-Ga1−x AlxAs, Phys. Rev. B 41, 6001–6007 (1990).

    Article  ADS  Google Scholar 

  80. L. V. Keldysh, Coulomb interaction in thin semiconductor and semimetal films, Pis’ma Zh. Eksp. teor. Fiz. 29, 716–719 (1979) [JETP Lett. 29, 658-661 (1979)].

    Google Scholar 

  81. Al. L. Efros and A. L. Efros, Interband absorption of light in a semiconductor sphere, Fiz. Tekh. Poluprovodn. 16, 1209–1214 (1982) [Sov. Phys. Semicond. 16, 772-778 (1982)].

    Google Scholar 

  82. A. I. Ekimov, I. A. Kudryavtsev, M. G. Ivanov, and Al. L. Efros, Photoluminescence of quasi-zero-dimensional semiconductor structures, Fiz. Tverd. Tela (Leningrad) 31, 192–207 (1989) [Sov. Phys. Solid State 31, 1385-1393 (1989)].

    Google Scholar 

  83. A. I. Ekimov, Al. L. Efros, M. G. Ivanov, A. A. Onushchenko, and S. K. Shumilov, Donor-like exciton in zero-dimension semiconductor structures, Solid State Commun. 69, 565–568 (1989).

    Article  ADS  Google Scholar 

  84. G. W. Bryant, Excitons in quantum boxes: Correlation effects and quantum confinement, Phys. Rev. B 37, 8763–8772 (1988).

    Article  ADS  Google Scholar 

  85. Y. Z. Hu, S. W. Koch, M. Lindberg, N. Peyghambarian, E. L. Pollock, and F. F. Abraham, Biexcitons in semiconductor quantum dots, Phys. Rev. Lett. 64, 1805–1807 (1990).

    Article  ADS  Google Scholar 

  86. Ch. Sikorski and U. Merkt, Spectroscopy of electronic states in InSb quantum dots, Phys. Rev. Lett. 62, 2164–2167 (1989).

    Article  ADS  Google Scholar 

  87. C. T. Liu, K. Nakamura, D. C. Tsui, K. Ismail, D. A. Antoniadis, and H. I. Smith, Magneto-optics of a quasi-zero-dimensional electron gas, Appl. Phys. Lett. 55, 168–170 (1989).

    Article  ADS  Google Scholar 

  88. J. Alsmeier, E. Batke, and J. P. Kotthaus, Voltage-tunable quantum dots in silicon, Phys. Rev. B 41, 1699–1702 (1990).

    Article  ADS  Google Scholar 

  89. M. Kohl, D. Heitmann, W. W. Rühle, P. Grambow, and K. Ploog, Decay times of one-dimensional excitons in GaAs/AlxGa1−x As quantum-well wires, Phys. Rev. B 41, 12338–12341 (1990).

    Article  ADS  Google Scholar 

  90. V. Fock, Bemerkung zur Quantelung des harmonischen Oszillators im Magnetfeld, Z. Phys. 47, 446–448 (1928).

    Article  ADS  MATH  Google Scholar 

  91. C. G. Darwin, The diamagnetism of the free electron, Proc. Cambridge Phil. Soc. 27, 86–90 (1931).

    Article  ADS  Google Scholar 

  92. D. Childers and P. Pincus, Size effects on the diamagnetic susceptibility of a free-electron gas, Phys. Rev. 177, 1036–1040 (1969).

    Article  ADS  Google Scholar 

  93. K. F. Berggren, G. Roos, and H. van Houten, Characterization of very narrow quasi-one-dimensional quantum channels, Phys. Rev. B 37, 10118–10124 (1988).

    Article  ADS  Google Scholar 

  94. H. L. Zhao, Y. Zhu, and S. Feng, Magnetic depopulation of hybrid magnetoelectric subbands in a quantum-well wire under an axial magnetic field, Phys. Rev. B 40, 8107–8110 (1989).

    Article  ADS  Google Scholar 

  95. L. Landau, Diamagnetismus der Metalle, Z. Phys. 64, 629–637 (1930).

    Article  ADS  MATH  Google Scholar 

  96. U. Sivan and Y. Imry, de Haas-van Alphen and Aharonov-Bohm-type persistent current oscillations in singly conected quantum dots, Phys. Rev. Lett. 61, 1001–1004 (1988).

    Article  ADS  Google Scholar 

  97. M. J. Kelly, Low-dimensional devices: future prospects, Semicond. Sci. Technol. 5, 1209–1214 (1990).

    Article  ADS  Google Scholar 

  98. J. A. Nixon and J. H. Davies, Potential fluctuations in heterostructure devices, Phys. Rev. B 41, 7929–7932 (1990).

    Article  ADS  Google Scholar 

  99. R. W. Keyes, The effect of randomness in the distribution of impurity atoms on FET thresholds, Appl. Phys. 8, 251–259 (1975).

    Article  ADS  Google Scholar 

  100. R. Landauer, Advanced technology and truth in advertising, Physica A 168, 75–87 (1990).

    Article  ADS  Google Scholar 

  101. E. Hanamura, Very large optical nonlinearity of semiconductor microcrystallites, Phys. Rev. B 37, 1273–1279 (1988).

    Article  ADS  Google Scholar 

  102. H. Haug and L. Bányai, eds., Optical Switching in Low-Dimensional Systems, Plenum, New York (1988).

    Google Scholar 

  103. E. Kapon, S. Simhony, R. Bhat, and D. M. Hwang, Single quantum wire semiconductor lasers, Appl. Phys. Lett. 55, 2715–2717 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stern, F. (1993). Quantum Wires and Quantum Dots. In: Butcher, P., March, N.H., Tosi, M.P. (eds) Physics of Low-Dimensional Semiconductor Structures. Physics of Solids and Liquids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2415-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2415-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2417-9

  • Online ISBN: 978-1-4899-2415-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics