Skip to main content

Part of the book series: Physics of Solids and Liquids ((PSLI))

Abstract

Compositionally modulated semiconductor structures were first proposed by Esaki and Tsu(1) in order to fabricate electronic oscillators. The material system that they proposed was alternate layers of GaAs and Al x Ga1−x As in order to achieve a modulation in the band edges and to create confined states in the GaAs layers, which in this case acted as potential wells. One of the main advantages of constructing layered structures from these two materials was that GaAs and AlAs have a very similar lattice constant and this means that the two materials can be grown together in layered structure without generating any significant strains due to the lattice mismatch. Molecular Beam Epitaxy (MBE) has been the dominant technique used to fabricate layered semiconductor systems since its invention by Cho and Arthur over 20 years ago.(2) In recent years there has been a lot of theoretical and experimental work performed on low-dimensional semiconductor systems and on the techniques used in fabricating them, and the present volume probably provides a good introduction to the whole area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Esaki and R. Tsu, IBM-J. Res. and Dev. 14, 61 (1970).

    Article  Google Scholar 

  2. A. Y. Cho and J. R. Arthur, Progress in Solid State Chemistry, Vol. 10 (J. O. McCaldin and G. Somorjai, eds), Pergamon, New York (1975), p. 157.

    Google Scholar 

  3. U. Gnutzmann and K. Clausecker, J. Appl. Phys. 3, 436, (1974).

    Google Scholar 

  4. E. Kasper, H. J. Herzog, and H. Kibbel, Appl. Phys. 8, 199 (1975).

    Article  ADS  Google Scholar 

  5. J. C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, and J. D. Robinson, J. Vac. Sci. Technol A2, 436 (1984).

    ADS  Google Scholar 

  6. R. People and J. C. Bean, Appl. Phys. Lett. 47, 322 (1985).

    Article  ADS  Google Scholar 

  7. E. Kasper, Surf. Sci. 170, 630 (1986).

    Article  ADS  Google Scholar 

  8. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Semiconductors: Physics of Group IV and III-V Compounds, Vol. 17a, Springer-Verlag, Berlin (1982), pp. 63 and 105.

    Google Scholar 

  9. R. A. Ghanbari, M. Phil. Thesis, University of Cambridge (1988).

    Google Scholar 

  10. R. W. G. Wyckoff, Crystal Structures, Vol. 1, 2nd ed., Interscience, New York (1963).

    Google Scholar 

  11. W. A. Harrison, Solid State Theory, Dover, New York (1979), p. 365.

    Google Scholar 

  12. W. Hayes and R. Loudon, Scattering of Light by Crystals, Wiley, New York (1978), p. 44.

    Google Scholar 

  13. M. Cardona, in: Light Scattering in Solids II (M. Cardona and G. Günterhodt, eds.), Springer-Verlag, Berlin (1982), p. 49.

    Chapter  Google Scholar 

  14. R. L. Kronig and W. G. Penney, Proc. Roy. Soc, London A130, 499 (1931).

    ADS  Google Scholar 

  15. S. M. Rytov, Akust, Zh. 2, 71 (1956).

    MathSciNet  Google Scholar 

  16. B. Jusserand and D. Paquet, in: Heterojunctions and Semiconductor Superlattices, (G. Allan, G. Bastard, N. Broccara, M. Lannoo and M. Voos, Eds.), Springer-Verlag, Berlin (1986).

    Google Scholar 

  17. B. Jusserand and M. Cardona, in: Light Scattering in Solids V (M. Cardona and G. Günterhodt, eds.), Springer-Verlag, Berlin (1989), p. 49.

    Chapter  Google Scholar 

  18. B. Jusserand, D. Paquet, F. Mollot, F. Alexendre, and G. Le Roux, Phys. Rev. B 35, 2808 (1987).

    Article  ADS  Google Scholar 

  19. M. I. Alonso, F. Cerdeira, F. Niles, M. Cardona, E. Kasper, and H. Kibbel, J. Appl. Phys. 66, 5645 (1989).

    Article  ADS  Google Scholar 

  20. P Santos, L. Ley, J. Merbert, and O. Koblinger, Phys. Rev. B 36, 4858 (1987).

    Article  ADS  Google Scholar 

  21. P. V. Santos and L. Ley, Phys. Rev. B 36, 3325 (1987).

    Article  ADS  Google Scholar 

  22. S. K. Yip and Y. C. Chang, Phys. Rev. B 30, 7037 (1984).

    Article  ADS  Google Scholar 

  23. A. K. Sood, J. Menéndez, M. Cardona, and K. Ploog, Phys. Rev. Lett. 54, 2111 (1985)

    Article  ADS  Google Scholar 

  24. E. Friess, K. Eberl, U. Menczigar, and G. Abstreiter, Solid State Comm. 73, 203 (1990).

    Article  ADS  Google Scholar 

  25. A. K. Sood, J. Menéndez, M. Cardona, and K. Ploog, Phys. Rev. Lett. 54, 2115 (1985).

    Article  ADS  Google Scholar 

  26. Thomas Zettler, PhD Thesis, University of Hamburg (1989).

    Google Scholar 

  27. M Cardona, in: Spectroscopy of Semiconductor Microstructures, (G. Fasol, A. Fasolino and P. Lugli, eds.), Proceedings of the NATO ARW, Venice, Plenum, New York (1989), p. 143.

    Google Scholar 

  28. P. N. Keating, Phys. Rev. 145, 637 (1966).

    Article  ADS  Google Scholar 

  29. H. L. McMurray, A. W. Solbrig Jr., J. K. Boyter, and C. J. Noble, J. Phys. Chem. Solids 32, 2359 (1967).

    Article  Google Scholar 

  30. G. Kanellis, Solid State Commun. 58, 93 (1986).

    Article  ADS  Google Scholar 

  31. A. Fasolino and E. Molinari, J. de Physique 48, 569 (1987).

    Article  Google Scholar 

  32. T. P. Pearsall, J. Bevk, L. C. Feldman, J. M. Bonar, and J. P. Mannearts, Phys. Rev. Lett. 58, 729 (1987).

    Article  ADS  Google Scholar 

  33. P. Friedel, M. Hybertson, and M. Schlüter, Phys. Rev. B 39, 7974 (1989).

    Article  ADS  Google Scholar 

  34. S. Froyen, D. M. Wood, and A. Zunger, Phys. Rev. B 36, 4547 (1987)

    Article  ADS  Google Scholar 

  35. S. Froyen, D. M. Wood, and A. Zunger, Phys. Rev. B 37, 6893 (1987).

    Article  ADS  Google Scholar 

  36. M. A. Gell, Phys. Rev. B 38, 7535, (1988).

    Article  ADS  Google Scholar 

  37. M. S. Hybertson and M. Schlüter, Phys. Rev. B 36, 9683 (1987).

    Article  ADS  Google Scholar 

  38. S. Satpathy, R. M. Martin, and C. van de Walle, Phys. Rev. B 38, 13237 (1988).

    Article  ADS  Google Scholar 

  39. K. B. Wong, M. Jaros, and J. P. Hagon, Phys. Rev. Lett. 60, 2221 (1988).

    Article  ADS  Google Scholar 

  40. M. S. Hybertson, M. Schlüter, R. People, S. A. Jackson, D. V. Lang, T. P. Pearsall, J. C. Bean, J. M. Vandenberg, and J. Bevk, Phys. Rev. B 37, 10195 (1988).

    Article  ADS  Google Scholar 

  41. M. I. Alonso, M. Cardona, and G. Kanellis, Solid State Comm. 69, 479 (1989).

    Article  ADS  Google Scholar 

  42. G. Kanellis, in: Spectroscopy of Semiconductor Microstructures, (G. Fasol, A. Fasolino and P. Lugli, eds.), Proceedings of the NATO ARW, Venice, Plenum, New York (1989), p. 207.

    Google Scholar 

  43. J. White, G. Fasol, R. A. Ghanbari, C. J. Gibbings, and C. G. Tuppen, Thin Solid Films 183, 71 (1989).

    Article  ADS  Google Scholar 

  44. J. Zi, K. Zhang and X. Xie, Appl. Phys. Lett. 57, 165 (1990).

    Article  ADS  Google Scholar 

  45. B. Jusserand, D. Paquet, A. Regreney, and J. Kerverac, Solid State Comm. 48, 499 (1983).

    Article  ADS  Google Scholar 

  46. H. Brugger, H. Reiner, G. Abstreiter, H. Jorke, H. Herzog, and E. Kasper, Superlatt. and Microstruct. 2, 451 (1986).

    Article  ADS  Google Scholar 

  47. B. Jusserand, F. Alexendre, J. Dubard, and D. Paquet, Phys. Rev. B 33, 2897 (1986).

    Article  ADS  Google Scholar 

  48. C. J. Gibbings, private communication.

    Google Scholar 

  49. A. Yariv, Optical Electronics, CBS College Publishing, New York (1985), p. 227.

    Google Scholar 

  50. E. Gharamani, D. J. Moss, and J. E. Sipe, Phys. Rev. Lett. 64, 2815 (1990).

    Article  ADS  Google Scholar 

  51. E. Friess, H. Brugger, K. Eberl, G. Krotz, and G. Abstreiter, Solid State Comm. 69, 899 (1989).

    Article  ADS  Google Scholar 

  52. A. Fasolino, E. Molinari, and A. Qteish, in: Condensed Matter Systems of Low Dimensionality, Plenum Press, New York (1991).

    Google Scholar 

  53. E. Richter and D. Strauch, Solid State Comm. 67, 867 (1987).

    Article  Google Scholar 

  54. E. Molinari and A. Fasolino, Superlatt. and Microstruct. 2, 397 (1986).

    Article  ADS  Google Scholar 

  55. J. D. White, R. A. Ghanbari, G. Fasol, M. A. Gell, C. J. Gibbings, and C. G. Tuppen, Appl. Phys. Lett. 57, 1523 (1990).

    Article  ADS  Google Scholar 

  56. M. A. Gell, Appl. Phys. Lett. 55, 484 (1989).

    Article  ADS  Google Scholar 

  57. M. A. Gell, Phys. Rev. B 40, 1966 (1989).

    Article  ADS  Google Scholar 

  58. E. Molinari and A. Fasolino, Appl. Phys. Lett. 54, 1220 (1989).

    Article  ADS  Google Scholar 

  59. H. Brugger, E. Friess, G. Abstreiter, E. Kasper, and H. Kibbel, Semicond. Sci. and Technol. 3, 1166 (1988).

    Article  ADS  Google Scholar 

  60. J. D. White, R. A. Ghanbari, G. Fasol, M. A. Gell, C. J. Gibbings, and C. G. Tuppen, Phys. Rev. B 43, 1685 (1991).

    Article  ADS  Google Scholar 

  61. W. Wegscheider, K. Eberl, U. Menczigar, and G. Abstreiter, Appl. Phys. Lett. 57, 875 (1990).

    Article  ADS  Google Scholar 

  62. T. R. Hart, R. L. Aggrawal, and B. Lax, Phys. Rev. B 1, 638 (1970).

    Article  ADS  Google Scholar 

  63. F. Cerdeira and M. Cardona, Phys. Rev. B 5, 1440 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

White, J.D., Fasol, G. (1993). Phonons in Low-Dimensional Systems. In: Butcher, P., March, N.H., Tosi, M.P. (eds) Physics of Low-Dimensional Semiconductor Structures. Physics of Solids and Liquids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2415-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2415-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2417-9

  • Online ISBN: 978-1-4899-2415-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics