Experiments on Two-Dimensional Wigner Crystals

  • E. Y. Andrei
  • F. J. B. Williams
  • D. C. Glattli
  • G. Deville
Part of the Physics of Solids and Liquids book series (PSLI)


In 1934 Wigner predicted(1) that the conduction electrons in a metal would undergo a transition from a liquid state to form a crystal when their density was sufficiently reduced. The crystal melts at a critical density for which the Coulomb energy of the configuration and its kinetic energy are comparable. At zero temperature the melting transition is quantal in nature and proceeds via zero-point fluctuations which grow as the density is increased. Another route for the melting is classical in nature and is induced by thermal fluctuations which increase when the temperature is raised.


Filling Factor Landau Level Electronic Wave Function Resonant Absorption Threshold Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. P. Wigner, Phys. Rev. 46, 1002 (1934).ADSCrossRefGoogle Scholar
  2. 2.
    C. C. Grimes and G. Adams, Phys. Rev. Lett. 42, 795 (1979).ADSCrossRefGoogle Scholar
  3. A. S. Rybalko, B. N. Esselson and Y. Z. Kovdrya, Sov. J. Low Temp. Phys. 5, 450 (1979).Google Scholar
  4. R. Mehrottra, B. M. Guenin, and A. J. Dahm, Phys. Rev. Lett. 48, 641 (1982).ADSCrossRefGoogle Scholar
  5. 3.
    F. Gallett, G. Deville, A. Valdes, and F. I. B. Williams, Phys. Rev. Lett. 49, 212 (1982).ADSCrossRefGoogle Scholar
  6. 4.
    G. Deville, A. Valdez, E. Y. Andrei, and F. I. B. Williams, Phys. Rev. Lett. 53, 588 (1984).ADSCrossRefGoogle Scholar
  7. 5.
    C. D. Glatti, E. Y. Andrei, and F. I. B. Williams, Phys. Rev. Lett. 60, 420 (1988).ADSCrossRefGoogle Scholar
  8. 6.
    E. Y. Andrei, G. Deville, D. C. Glattli, F. I. B. Williams, E. Paris, and B. Etienne, Phys. Rev. Lett. 60, 2765 (1988)ADSCrossRefGoogle Scholar
  9. D. C. Glattλi, G. Deville, V. Duburcq, F. I. B. Williams, E. Paris, B. Etienne, and E. Y. Andrei, Surf. Sci. 229, 344 (1990).ADSCrossRefGoogle Scholar
  10. 7.
    R. L. Willett, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W. West, and K. W. Baldwin, Phys. Rev. B 38, 7881 (1988).ADSCrossRefGoogle Scholar
  11. H. W. Jiang, R. L. Willett, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer and K. W. West, Phys. Rev. Lett. 65, 633 (1990).ADSCrossRefGoogle Scholar
  12. 8.
    F. I. B. Williams, P. A. Wright, R. G. Clark, E. Y. Andrei, G. Deville, D. C. Glattli, O. Probst, B. Etienne, C. Dorin, S. T. Foxon, and J. J. Harris, Phys. Rev. Lett. 66, 3285 (1991).ADSCrossRefGoogle Scholar
  13. 9.
    F. I. B. Williams, E. Y. Andrei, R. G. Clark, G. Deville, B. Etienne, C. T. Foxon, D. C. Glattli, E. Paris, and P. A. Wright, in: Localization and Confinement of Electrons in Semiconductors, p. 192, Springer-Verlag, Berlin (1990).CrossRefGoogle Scholar
  14. 10.
    R. L. Willett, H. W. Stormer, L. N. Pfeiffer, K. W. West, M. Shayegan, M. Santos, and T. Sajoto, Phys. Rev. B 40, 6432 (1989).ADSCrossRefGoogle Scholar
  15. V. J. Goldman, J. E. Cunningham, M. Shayegan, and M. Santos, Phys. Rev. Lett. 65, 2189 (1990).ADSCrossRefGoogle Scholar
  16. 11.
    L. Bonsall and A. A. Maradudin, Phys. Rev. B 15, 1959 (1977).ADSCrossRefGoogle Scholar
  17. 12.
    D. Ceperly, Phys. Rev. B 18, 3126 (1978).ADSCrossRefGoogle Scholar
  18. B. Tanatar and D. Ceperly, Phys. Rev. B 39, 5005 (1989).ADSCrossRefGoogle Scholar
  19. 13.
    K. Maki and X. Zotos, Phys. Rev. B 38, 4349 (1983).ADSCrossRefGoogle Scholar
  20. 14.
    P. K. Lam and S. M. Girvin, Phys. Rev. B 30, 483 (1984).ADSCrossRefGoogle Scholar
  21. 15.
    D. Levesque, J. J. Weiss, and A. H. MacDonald, Phys. Rev. B 30, 1056 (1984).ADSCrossRefGoogle Scholar
  22. 16.
    Yu. E. Lozovik, V. M. Fartzdinov, and B. Abdullaev, J. Phys. C 18, L807 (1985).ADSCrossRefGoogle Scholar
  23. 17.
    S. T. Chui, T. M. Hakim, and K. B. Ma, Phys. Rev. B 33, 7110 (1986).ADSCrossRefGoogle Scholar
  24. 18.
    S. Kivelson, C. Kallin, D. P. Arovas, and J. P. Schrieffer, Phys. Rev. B 36, 1620 (1987).ADSCrossRefGoogle Scholar
  25. 19.
    K. Esfarhani and S. T. Chui to be published.Google Scholar
  26. 20.
    K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).ADSCrossRefGoogle Scholar
  27. 21.
    D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).ADSCrossRefGoogle Scholar
  28. 22.
    A. V. Chaplik, Zh. Eksp. Teor. Fiz. 62, 206 (1972).Google Scholar
  29. 23.
    A. J. Dahm and W. F. Vinen, Physics Today, February (1987).Google Scholar
  30. 24.
    R. E. Prange and S. M. Girvin (eds.), The Quantum Hall Effect, Springer-Verlag, Berlin (1987).Google Scholar
  31. 25.
    E. E. Mendez, L. L. Chang, M. Heiblum, Phys. Rev. B 28, 4886 (1983).ADSCrossRefGoogle Scholar
  32. 26.
    B. Etienne and E. Paris, J. Phys. 48, 2049 (1987).CrossRefGoogle Scholar
  33. 27.
    C. T. Foxon, J. J. Harris, D. Hilton, J. Hewett, and C. Roberts, Semicon. Sci. Tech. 4, 582 (1989).ADSCrossRefGoogle Scholar
  34. 28.
    G. Grüner and A. Zettl, Phys. Rep. 119, 117 (1985).ADSCrossRefGoogle Scholar
  35. J. C. Gill and H. H. Wills, Contemp. Phys. 27, 37 (1986).ADSCrossRefGoogle Scholar
  36. 29.
    H. W. Jiang and A. J. Dahm, Phys. Rev. Lett. 62, 1389 (1989).ADSCrossRefGoogle Scholar
  37. 30.
    Y. Imri and S. Ma, Phys. Rev. Lett. 35, 399 (1975).ADSGoogle Scholar
  38. 31.
    P. A. Lee and M. Rice, Phys. Rev. B 19, 1345 (1979).CrossRefGoogle Scholar
  39. H. Fukuyama and P. A. Lee, Phys. Rev. B 17, 535 (1978).ADSCrossRefGoogle Scholar
  40. 32.
    V. J. Goldman, M. Shayegan, and D. C. Tsui, Phys. Rev. Lett. 61, 881 (1988).ADSCrossRefGoogle Scholar
  41. 33.
    J. R. Mallett, R. G. Clark, R. J. Nicholas, R. Willett, J. J. Harris, and C. T. Foxon, Phys. Rev. B 38, 2200 (1988).ADSCrossRefGoogle Scholar
  42. 34.
    J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).ADSCrossRefGoogle Scholar
  43. D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979).ADSCrossRefGoogle Scholar
  44. A. P. Young, Phys. Rev. B 19, 1855 (1979).ADSCrossRefGoogle Scholar
  45. 35.
    S. T. Chui, Phys. Rev. Lett. 48, 933 (1982)ADSCrossRefGoogle Scholar
  46. Y. Saitoh, Phys. Rev. B 26, 6239 (1982).ADSCrossRefGoogle Scholar
  47. 36.
    T. V. Ramakrishnan, Phys. Rev. Lett. 48, 541 (1982).ADSCrossRefGoogle Scholar
  48. 37.
    R. Morf, Phys. Rev. Lett. 43, 931 (1979)ADSCrossRefGoogle Scholar
  49. M. Chang and K. Maki, Phys. Rev. B 27, 1646 (1983).ADSCrossRefGoogle Scholar
  50. 38.
    R. C. Gann, S. Chakravarty, and G. V. Chester, Phys. Rev. B 20, 326 (1979).ADSCrossRefGoogle Scholar
  51. R. Morf, Phys. Rev. Lett. 43, 931 (1979).ADSCrossRefGoogle Scholar
  52. R. K. Kalia, P. Vashishta, and S. W. de Leeuw, Phys. Rev. B 23, 2793 (1981).CrossRefGoogle Scholar
  53. 39.
    Y. P. Li, T. Sajoto, L. W. Engel, D. C. Tsui, and M. Shayegen, Phys Rev. Lett. 67, 1630 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • E. Y. Andrei
    • 1
  • F. J. B. Williams
    • 2
  • D. C. Glattli
    • 2
  • G. Deville
    • 2
  1. 1.Department of Physics and AstronomyRutgers UniversityPiscatawayUSA
  2. 2.D.Ph.S.R.M. Centre d’Etudes Nucleares-SaclayGif-sur-YvetteFrance

Personalised recommendations