Skip to main content

Part of the book series: Modern Inorganic Chemistry ((MICE,volume 1))

Abstract

Mössbauer effect spectroscopy has a high-caliber pedigree, of over 30 years standing, as an incisive technique in the delineation of structural details of condensed matter. Nowhere have the contributions of Mössbauer spectroscopy been more effective than in the fields of solid-state physics and materials science. Examples of applications in which measurements of nuclear hyperfine interactions by Mössbauer spectroscopy provide insight into the local atomic environment of the Mössbauer isotope atom, abound in the literature. The hyperfine interactions of prime interest are: the electric monopole interaction (the isomer shift), the electric quadrupole interaction (quadrupole splitting) and the magnetic dipole interaction (nuclear Zeeman effect; magnetic hyperfine splitting).1,2 Just one example of an early application of Mössbauer spectroscopy in this way is the investigation of the cubic Laves phase intermetallic compound ZrFe2. Wertheim et al. 3 were able to account fully for their Mössbauer spectrum in terms of the directions of easy/hard magnetization and the principal axis of the electric field gradient, consistent with the number of iron atoms in the different locations on the corners of tetrahedra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Gonser, ed., Mössbauer Spectroscopy, Springer-Verlag, Berlin (1975).

    Google Scholar 

  2. P. Gütlich, R. Link, and A. Trautwein, Mössbauer Spectroscopy and Transition Metal Chemistry, Springer-Verlag, Berlin (1978).

    Google Scholar 

  3. G. K. Wertheim, V. Jaccarino, and J. H. Wernick, Phys. Rev. 135A, 151 (1964).

    Google Scholar 

  4. U. Gonser, ed., Application of Nuclear Techniques to the Studies of Amorphous Metals, International Atomic Energy Agency, Vienna (1981).

    Google Scholar 

  5. C. L. Chien, Hyp. Interact. 53, 3 (1990).

    CAS  Google Scholar 

  6. J. G. Stevens, Hyp. Interact. 71, 1537 (1992).

    CAS  Google Scholar 

  7. H. Gleiter, in Deformation of Polycrystals, N. Hansen, A. Horsewell, T. Leffers, and H. Lilholt, eds., p. 15, Proc. Second Risø Int. Symp. Metallurgy and Materials Science, Roskilde, Denmark (1981).

    Google Scholar 

  8. P. H. Hess and P. H. Parker, Jr., J. Appl. Polym. Sci., 10, 1915 (1966).

    CAS  Google Scholar 

  9. R. V. Morris, D. G. Agresti, H. V. Lauer, Jr., J. A. Newcomb, T. D. Shelfer, and A. V. Murali, J. Geophys. Res. 94, 2760 (1989).

    CAS  Google Scholar 

  10. J. M. Knudsen, M. B. Madsen, M. Olsen, L. Vistisen, C. B. Koch, S. Mørup, E. Kankeleit, G. Klingelhöfer, E. N. Evlanov, V. N. Khromov, L. M. Mukhin, O. F. Prilutski, B. Zubkov, G. V. Smirnov, and J. Juchniewicz, Hyp. Interact. 68, 83 (1991).

    CAS  Google Scholar 

  11. R. Ruthen, Sci. Am. 262(5), 11 (1990).

    Google Scholar 

  12. R. W. Cahn, Nature 348, 389 (1990).

    Google Scholar 

  13. H. Gleiter, Prog. Mater. Sci. 33, 223 (1989).

    CAS  Google Scholar 

  14. R. Birringer, Mater. Sci. Eng. A117, 33 (1989).

    CAS  Google Scholar 

  15. H. Gleiter, J. Appl. Crystallogr. 24, 79 (1991).

    CAS  Google Scholar 

  16. U. Herr, J. Jing, R. Birringer, U. Gonser, and H. Gleiter, Appl. Phys. Lett. 50, 472 (1987).

    CAS  Google Scholar 

  17. K. L. Merkle, J. F. Reddy, C. L. Wiley, and J. D. Smith, Phys. Rev. Lett. 59, 2887 (1987).

    CAS  Google Scholar 

  18. R. P. Andres, R. S. Averback, W. L. Brown, L. E. Brus, W. A. Goddard, A. Kaldor, S. G. Louie, M. Moscovits, P. S. Peercy, S. J. Riley, R. W. Siegel, F. Spaepen, and Y. Wang, J. Mater. Res. 4, 740 (1989).

    Google Scholar 

  19. D. W. Johnson, Adv. Ceram. 21, 3 (1987).

    CAS  Google Scholar 

  20. E. Matijevic, in Ultrastructure Processing of Ceramics, Glasses and Composites, L. L. Hench and D. R. Ulrich, eds., Wiley, New York (1984).

    Google Scholar 

  21. P. Vincencini, ed., Ceramic Powders, Elsevier, Amsterdam (1983).

    Google Scholar 

  22. H. Hausner, in: Ceramic Materials and Components for Engines, W. Bunk and H. Hausner, eds., Deutsche Keramische Gesellschaft, Bad Honnef, Germany, p. 27 (1986).

    Google Scholar 

  23. H. Hausner, Ber. Dtsch. Keram. Ges. 55, 194 (1978).

    CAS  Google Scholar 

  24. C. Hayashi, Phys. Today 48, 44 (1987).

    Google Scholar 

  25. C. R. Veale, Fine Powders, p. 5, Applied Science Publ., London (1972).

    Google Scholar 

  26. P. Fayet and L. Woeste, Z. Phys. D3, 177 (1986).

    Google Scholar 

  27. R. B. Wright, J. K. Bates, and D. M. Gruen, Inorg. Chem. 17, 2275 (1978).

    CAS  Google Scholar 

  28. H. Abe, W. Schulze, and B. Tesche, Chem. Phys. 47, 95 (1980).

    CAS  Google Scholar 

  29. K. Sattler, J. Muehlbach, and E. Recknagel, Phys. Rev. Lett. 45, 821 (1980).

    CAS  Google Scholar 

  30. R. S. Bowles, J. J. Kolstad, J. M. Calo, and R. P. Andres, Surf. Sci. 106, 117 (1981).

    CAS  Google Scholar 

  31. E. Choi and R. P. Andres, in Physics and Chemistry of Small Clusters, P. Jena, B. K. Rao, and S. N. Khanna, eds., p. 61, Plenum Press, New York (1987).

    Google Scholar 

  32. R. W. Siegel and J. A. Eastman, Mater. Res. Soc. Symp. 132, 3 (1989).

    Google Scholar 

  33. R. W. Siegel and H. Hahn, in Current Trends in Physics of Materials, M. Yussouff, ed., p. 403, World Scientific Publ., Singapore (1987).

    Google Scholar 

  34. J. Karch, R. Birringer, and H. Gleiter, Nature 330, 556 (1987).

    CAS  Google Scholar 

  35. J. Jing, Ph.D. thesis, Universität des Saarlandes, Saarbrücken (1989).

    Google Scholar 

  36. R. S. Averback, H. Hahn, H. J. Hoefler, J. L. Logas, and T. C. Shen, Mater. Res. Soc. Symp. 153, 3 (1989).

    CAS  Google Scholar 

  37. A. Yanagida, S. Yatsuya, and K. Mihama, Jpn. J. Appl. Phys. 26, L25 (1987).

    CAS  Google Scholar 

  38. S. Iwama, K. Hayakawa, and T. Arizumi, J. Cryst. Growth 66, 189 (1984).

    CAS  Google Scholar 

  39. J. A. Eastman, Mater. Res. Soc. Symp. 132, 27 (1989).

    Google Scholar 

  40. Z. Li, H. Hahn, and R. W. Siegel, Mater. Lett. 6, 342 (1988).

    CAS  Google Scholar 

  41. S. Yatsuya, T. Kamakura, K. Yamauchi, and K. Mihama, Jpn. J. Appl. Phys. 25, L42 (1986).

    CAS  Google Scholar 

  42. H. Hahn and R. S. Averback, Appl. Phys. Lett. 67, 1113 (1990).

    CAS  Google Scholar 

  43. H. Trapp, private communication.

    Google Scholar 

  44. Y. Liu, O.-L. Zhang, F. K. Tittel, R. F. Curl, and R. E. Smalley, J. Chem. Phys. 85, 7434 (1986).

    CAS  Google Scholar 

  45. M. D. Morse, Chem. Rev. 86, 1049 (1986).

    CAS  Google Scholar 

  46. K. LaiHing, R. G. Wheeler, W. L. Wilson, and M. A. Duncan, J. Chem. Phys. 87, 3401 (1987).

    CAS  Google Scholar 

  47. E. A. Rohlfing, D. M. Cox, R. Petkovic-Luton, and A. Kaldor, J. Phys. Chem. 88, 6227 (1984).

    CAS  Google Scholar 

  48. K. LaiHing, P. Y. Cheng, and M. A. Duncan, J. Phys. Chem. 91, 6521 (1987).

    CAS  Google Scholar 

  49. G. W. Rice and R. L. Woodin, J. Am. Ceram. Soc. 71, C181 (1988).

    CAS  Google Scholar 

  50. M. Cauchetier, O. Croix, M. Luce, M. Michon, J. Paris, and S. Tistchenko, Ceram. Int. 11, 13 (1987).

    Google Scholar 

  51. L. M. Sheppard, Adv. Mater. Processes 4, 53 (1987).

    Google Scholar 

  52. G. W. Rice and R. L. Woodin, in Applications of Lasers to Industrial Chemistry, Proc. SPIE, p. 458 (1984).

    Google Scholar 

  53. R. A. Fiato, G. W. Rice, and S. L. Soled, U. S. Patents 4659681, 4668647.

    Google Scholar 

  54. Degussa, Patent DE 762 723 (1942).

    Google Scholar 

  55. Degussa, Frankfurt, Tech. Bull. Pigments 56, 12 (1982).

    Google Scholar 

  56. A. T. Liu and P. Kleinschmit, in Novel Ceramic Fabrication Processes and Applications, R. W. Davidge, ed., p. 1, Institute of Ceramics, Shelton (1986).

    Google Scholar 

  57. E. Wagner and H. Brunner, Angew. Chem. 72, 744 (1960).

    CAS  Google Scholar 

  58. M. Carey Lea, Am. J. Sci. 37, 479 (1989).

    Google Scholar 

  59. J. Turkevich, P. C. Stevenson, and J. Hillier, Discuss. Faraday Soc. 11, 55 (1951).

    Google Scholar 

  60. R. M. Wilenzick, D. C. Russell, R. H. Morriss, and S. W. Marshall, J. Chem. Phys. 47, 533 (1967).

    CAS  Google Scholar 

  61. H. Hausner, Ber. Dtsch. Keram. Ges. 55, 194 (1978).

    CAS  Google Scholar 

  62. A. Henglein and R. J. Tasuch-Treml, J. Colloid Interface Sci. 80, 84 (1981).

    CAS  Google Scholar 

  63. M. Mostafavi, J. L. Marignier, J. Amblard, and J. Belloni, Radiat. Phys. Chem. 34, 605 (1989).

    Google Scholar 

  64. S. Mosseri, A. Henglien, and E. Janata, J. Phys. Chem. 93, 6791 (1989).

    CAS  Google Scholar 

  65. A. Henglein, Chem. Phys. Lett. 154, 473 (1989).

    CAS  Google Scholar 

  66. S. T. Lin, M. T. Frankling, and K. J. Klabunde, Langmuir 2, 259 (1986).

    CAS  Google Scholar 

  67. A. E. Berkowitz and J. L. Walter, J. Mater. Res. 2, 277 (1987).

    CAS  Google Scholar 

  68. F. Traeger and G. Pulitz, Metal Clusters, p. 112, Springer-Verlag, Berlin (1986).

    Google Scholar 

  69. J. Bourdin Growth and Properties of Metal Clusters, Elsevier, Amsterdam (1980).

    Google Scholar 

  70. S. Sugano, Y. Nishina, and S. Ohnishi, Microclusters, p. 126, Springer-Verlag, Berlin (1987).

    Google Scholar 

  71. R. Rossetti, J. L. Ellison, H. M. Gibson, and L. E. Brus, J. Chem. Phys. 80, 4464 (1984).

    CAS  Google Scholar 

  72. M. Meyer, C. Walberg, K. Kurihara, and J. H. Fendler, J. Chem. Commun. 90, 279 (1984).

    Google Scholar 

  73. Y. Wang, A. Suna, W. Mahler, and R. Kasowski, J. Chem. Phys. 87, 7315 (1987).

    CAS  Google Scholar 

  74. N. F. Borrelli, D. W. Hall, H. J. Holland, and D. W. Smith, J. Appl. Phys. 61, 5399 (1987).

    CAS  Google Scholar 

  75. P. J. Anderson and P. L. Morgan, Trans. Faraday Soc. 60, 930 (1964).

    CAS  Google Scholar 

  76. A. W. Searcy, J. Am. Ceram. Soc. 70, 155 (1983).

    Google Scholar 

  77. M. Kim, U. Dahmen, and A. W. Searcy, J. Am. Ceram. Soc. 70, 164 (1987).

    Google Scholar 

  78. G. W. Kriechbaum and P. Kleinschmit, Adv. Mater. 10, 330 (1989).

    Google Scholar 

  79. A. Fojtik, H. Weiler, U. Koch, and A. Henglein, Ber. Bunsenges. Phys. Chem. 88, 969 (1984).

    CAS  Google Scholar 

  80. M. L. Steigerwald, A. P. Alivisatos, J. M. Gibson, T. D. Harris, R. Kortan, A. J. Muller, A. M. Thayer, T. M. Duncan, D. C. Douglass, and L. E. Brus, J. Am. Chem. Soc. 110, 3046 (1988).

    CAS  Google Scholar 

  81. R. H. Holm, Acc. Chem. Res. 10, 427 (1977).

    CAS  Google Scholar 

  82. B. K. Teo, K. Keating, and Y.-H. Kao, J. Am. Chem. Soc. 109, 3494 (1987).

    CAS  Google Scholar 

  83. Y. Wang and N. Herron, J. Phys. Chem. 91, 257 (1987).

    CAS  Google Scholar 

  84. S. Umemura, in Final Report of the Ultrafine Particles Project, Research Development Corporation of Japan, 5-2, Nagatacho 2-chome, Chiyoda-ku, Tokyo 100, Japan (1986).

    Google Scholar 

  85. H. Watanabe, in The Physics and Fabrication of Microstructures and Microdevices, M. J. Kelly and C. Weisbuch, eds., p. 158, Springer-Verlag, Berlin (1986).

    Google Scholar 

  86. T. Inoshita and H. Watanabe, Optoelectron. Devices Technol. 1, 33 (1986).

    Google Scholar 

  87. T. Inoshita and H. Watanabe, in Microclusters, S. Sugano, Y. Nishida, and S. Ohnishi, eds., p. 281, Springer-Verlag, Berlin (1987).

    Google Scholar 

  88. S. Kashu, E. Fuchita, T. Manabe, and T. Hayashi, Jpn. J. Appl. Phys. 23, L910 (1984).

    Google Scholar 

  89. T. Takagi, Z. Phys. D3, 272 (1986).

    Google Scholar 

  90. I. Yamada, C. J. Palmstron, E. Kennedy, J. W. Mayer, H. Inokawa, and T. Takagi, Mater. Res. Soc. Symp. Proc. 37, 401 (1984).

    Google Scholar 

  91. T. Ina, M. Hanai, H. Ito, and Y. Minowa, Proc. 5th Int. Conf. Ion and Plasma Assisted Techniques, p. 16, CEP Consultants Ltd., Edinburgh (1985).

    Google Scholar 

  92. R. Birringer, Ph.D. thesis, Universität des Saarlandes, Saarbrücken (1985).

    Google Scholar 

  93. Y. Kawamura, M. Takagi, and M. Akai, Mater. Sci. Eng. 98, 449 (1988).

    CAS  Google Scholar 

  94. E. Hellstern, H. J. Fecht, Z. Fu, and W. L. Johnson, J. Appl. Phys. 65, 305 (1989).

    CAS  Google Scholar 

  95. P. H. Shingu, B. Huang, S. R. Nishitani, and S. Nasu, Jpn. Inst. Met. Trans. Suppl. 29, 3 (1988).

    Google Scholar 

  96. W. Schlump and H. Grewe, in Proc. DGM Conf. New Materials by Mechanical Alloying Techniques, E. Arzt and L. Schultz, eds., p. 307, Calw-Hirsau, Oct. 1988, DGM Oberursel, Germany (1992).

    Google Scholar 

  97. M. J. Luton, C. S. Jayanath, M. M. Disko, S. Matras, and J. Vallone, Mater. Res. Soc Symp. Proc. 132, 79 (1989).

    Google Scholar 

  98. E. Hellstern, H. J. Fecht, C. Garland, and W. L. Johnson, Mater. Res. Soc. Symp. Proc. 132, 137 (1989).

    Google Scholar 

  99. A. Calka and A. P. Radlinski, Mater. Sci. Eng. A134, 1350 (1991).

    CAS  Google Scholar 

  100. A. P. Radlinski, A. Calka, B. W. Ninham, and W. A. Kaczmarek, Mater. Sci. Eng. A134, 1346 (1991).

    CAS  Google Scholar 

  101. R. Z. Valiev, Y. D. Vishnyakov, R. R. Mulyukov, and G. S. Fainstein, Phys. Status Solidi A117 549 (1990).

    Google Scholar 

  102. R. Z. Valiev, Y. D. Vishnyakov, R. R. Mulyukov and G. S. Fainstein, Mater. Sci. Eng. A137, 35 (1991).

    CAS  Google Scholar 

  103. A. K. Lee, L. E. Sanchez-Caldera, J. H. Chun, and N. P. Suh, Mater. Res. Soc. Symp. Proc. 132, 87 (1989).

    Google Scholar 

  104. N. P. Suh, ASME J. Eng. Ind. 104, 327 (1982).

    CAS  Google Scholar 

  105. N. P. Suh, N. Tsuda, M. G. Moon, and N. Saka, ASME J. Eng. Ind. 104, 332 (1982).

    CAS  Google Scholar 

  106. J. P. Riviäre, P. Brouillaud, and J. F. Dinhut, Radiation Effects and Defects in Solids 114, 145 (1990).

    Google Scholar 

  107. S. J. Savage and F. H. Froes, J. Met. 36, 20 (1984).

    CAS  Google Scholar 

  108. T. R. Anantharaman, Metallic Glasses: Production, Properties and Applications, Trans. Techn., p. 1 (1984).

    Google Scholar 

  109. J. Bigot, Preparation of Metallic Glasses and its Influence on the Properties, p. 18, Summer School on Amorphous Metals, World Scientific Publ., Singapore, p. 18, (1986).

    Google Scholar 

  110. H. Bestgen, Proc. 5th Conf. Rap. Quenched Met., p. 433 (1985).

    Google Scholar 

  111. R. Sonnenberger, H. Bestgen, and G. Dietz, Z. Phys. B61, 289 (1984).

    Google Scholar 

  112. R. Sonnenberger, E. Pfanner, and G. Dietz, Z. Phys. B63, 203 (1986).

    Google Scholar 

  113. K. Boylan, D. Ostrander, U. Erb, G. Palumbo, and K. T. Aust. Scr. Metall. 25, 2711 (1991).

    CAS  Google Scholar 

  114. S. Veprek, Z. Iqbal, H. R. Oswald, and A. B. Webb, J. Phys. C14, 295 (1981).

    Google Scholar 

  115. H. J. Schalditz, Z. Metall. 59, 18 (1968).

    Google Scholar 

  116. H. G. F. Wilsdorf, O. T. Inal, and L. E. Murr, Z. Metall. 69, 701 (1978).

    CAS  Google Scholar 

  117. B. M. Gallois, R. Mathur, S. R. Lee, and J. Y. Yoo, Mater. Res. Soc. Symp. Froc. 132, 49 (1989).

    Google Scholar 

  118. R. A. Roy and R. Roy, Abstracts, Materials Research Society Annual Meeting, p. 377, Boston (1982).

    Google Scholar 

  119. D. W. Hoffman, R. Roy, and S. Komarneni, Ceram. Bull. 62, 375 (1983).

    Google Scholar 

  120. R. A. Roy and R. Roy, Mater. Res. Bull. 19, 169 (1984).

    CAS  Google Scholar 

  121. D. W. Hoffman, R. Roy, and S. Komarneni, J. Am. Ceram. Soc. 67, 468 (1984).

    CAS  Google Scholar 

  122. R. Roy, S. Komarneni, and D. M. Roy, in Better Ceramics Through Chemistry, C. J. Brinker, D. E. Clark, and D. R. Ulrich, eds., p. 347, Elsevier, North Holland, New York (1984).

    Google Scholar 

  123. D. W. Hoffman, R. Roy, and S. Komarneni, Mater. Lett. 2, 245 (1984).

    CAS  Google Scholar 

  124. D. W. Hoffman, S. Komameni, and R. Roy, J. Mater. Sci. Lett. 3, 439 (1985).

    Google Scholar 

  125. Y. Suwa, R. Roy, and S. Komameni, J. Am. Ceram. Soc. 68, C–238 (1985).

    CAS  Google Scholar 

  126. R. Roy, Y. Suwa, and S. Komarneni, in Science of Ceramic Chemical Processing, L. L. Hench and D. R. Ulrich, eds., p. 247, Wiley, New York (1986).

    Google Scholar 

  127. Y. Suwa, S. Komarneni, and R. Roy, J. Mater. Sci. Lett. 5, 21 (1986).

    CAS  Google Scholar 

  128. Y. Suwa, R. Roy, and S. Komameni, Mater. Sci. Eng. 83, 151 (1986).

    CAS  Google Scholar 

  129. G. Vilmin, S. Komameni, and R. Roy, J. Mater. Sci. 22, 3556 (1987).

    CAS  Google Scholar 

  130. R. Birringer, U. Herr, and H. Gleiter, Jpn. Inst. Met. Trans. Suppl. 27, 43 (1986).

    Google Scholar 

  131. R. W. Siegel and H. Hahn, in Current Trends in Physics of Materials, M. Yussouff, ed., p. 403, World Scientific Publ., Singapore (1987).

    Google Scholar 

  132. C. Surayanarayana and F. H. Froes, in Proc. Physical Chemistry of Powder Metals Production and Processing, W. Murray and D. G. V. Robertson, eds., p. 269, TMS Publ., Warrandale, PA (1990).

    Google Scholar 

  133. P. Marquardt and H. Gleiter, Verh. Dtsch. Phys. Ges. 15, 328 (1980).

    Google Scholar 

  134. W. Wunderlich, Y. Ishida, and R. Maurer, Scr. Metall. 24, 403 (1990).

    CAS  Google Scholar 

  135. W. Wang, H. Fuchs, J. Ying, and H. Gleiter, Ultramicroscopy 42–44, 594 (1992).

    Google Scholar 

  136. M. Klingel, Ph.D. thesis, Universität des Saarlandes, Saarbrücken (1992).

    Google Scholar 

  137. E. Jorra, H. Franz, J. Peisl, G. Wallner, W. Petry, R. Bininger, H. Gleiter, and T. Haubold, Philos. Mag. B60, 159 (1989).

    Google Scholar 

  138. J. E. Epperson, R. W. Siegel, J. W. White, T. E. Klippert, A. Narayanasamy, J. A. Eastman, and F. Trouw, Mater. Res. Soc. Symp. Proc. 132, 15 (1989).

    Google Scholar 

  139. R. Kirchheim, T. Muetschele, W. Kieninger, H. Gleiter, R. Birringer, and T. D. Koblé, Mater. Sci. Eng. 99, 457 (1988).

    CAS  Google Scholar 

  140. T. Muetschele and R. Kirchheim, Scr. Metall. 21, 135 (1987).

    CAS  Google Scholar 

  141. H. Hahn, H. J. Hoefler, and R. S. Averback, Defect and Diffusion Forum 66–69, 549 (1989).

    Google Scholar 

  142. J. Horvath, R. Birringer, and H. Gleiter, Solid State Commun. 62, 319 (1987).

    CAS  Google Scholar 

  143. S. Schumacher, R. Birringer, R. Strauss, and H. Gleiter, Acta Metall. 37, 2485 (1989).

    CAS  Google Scholar 

  144. H. J. Hoefler, Ph.D. thesis, Universität des Saarlandes, Saarbrücken (1991).

    Google Scholar 

  145. H. Gleiter, Solid State Phys. (b) 172, 41 (1992).

    CAS  Google Scholar 

  146. A. P. Sutton, Philos. Mag. 63, 793 (1991).

    Google Scholar 

  147. S. R. Phülipot, D. Wolf, and S. Yip, MRS Bull. 12, 38 (1990).

    Google Scholar 

  148. D. Wolf, Acta Metall. 37, 1983 (1990).

    Google Scholar 

  149. T. Limbach, S. Trapp, H. Gleiter, X. Zhao, and S. J. Campbell, (to be published).

    Google Scholar 

  150. R. Würschum. W. Greiner, G. Soyez, and H. E. Schaefer, in Positron Annihilation: Proceedings of the 9th International Conference (Aug. 26–30, 1991, Szombathely, Hungary), Zs. Kajcsos and Cs. Steles, eds., Zurich, Trans. Tech. 1992 (Materials Science Forum, pp. 105-110).

    Google Scholar 

  151. T. Haubold, R. Birringer, B. Lengeler, and H. Gleiter, Phys. Lett. 135, 461 (1989).

    CAS  Google Scholar 

  152. T. Haubold, W. Krauss, and H. Gleiter, Philos. Mag. 63, 245 (1991).

    CAS  Google Scholar 

  153. S. Ramasamy, J. Jiang, H. Gleiter, R. Birringer, and U. Gonser, Solid state Commun. 74, 851 (1990).

    CAS  Google Scholar 

  154. J. Jiang, S. Ramasamy, R. Birringer, U. Gonser, and H. Gleiter, Solid State Commun. 80, 525 (1991).

    CAS  Google Scholar 

  155. M. Wagner, Phys. Rev. B45, 635 (1992).

    Google Scholar 

  156. J. Rupp and R. Birringer, Phys. Rev. B36, 7888 (1987).

    Google Scholar 

  157. E. Hellstern, H. J. Fecht, Z. Fu, and W. L. Johnson, J. Appl. Phys. 65, 305 (1989).

    CAS  Google Scholar 

  158. H. Klein, Diploma thesis, Universität des Saarlandes, Saarbrücken (1992).

    Google Scholar 

  159. S. L. Sass and J. Fitzsimmons, Phys. Rev. Lett. 61, 2237 (1988).

    Google Scholar 

  160. H. J. Klam, H. Hahn, and H. Gleiter, Acta Metall 35, 2101 (1987).

    CAS  Google Scholar 

  161. H. E. Schaefer, R. Wiirschum, and R. Birringer, Phys. Rev. B38, 9549 (1988).

    Google Scholar 

  162. J. Weissmueller, R. Birringer, and H. Gleiter, Proc. TMS Annual Meeting, New Orleans, 1991, p. 273, TMS, Warrandale, PA. (1992).

    Google Scholar 

  163. X. Zhu, R. Birringer, U. Herr, and H. Gleiter, Phys. Rev. B35, 9085 (1987).

    Google Scholar 

  164. M. R. Fitzsimmons, J. A. Eastman, M. Mueller-Stach, and G. Wallner, Phys. Rev. B. 44, 2452 (1991).

    CAS  Google Scholar 

  165. M. S. Duesbury and G. Y. Richardson, Solid State Mater. Sci. 17, 1 (1991).

    Google Scholar 

  166. A. Tschoepe, Ph.D. thesis, Universität des Saarlandes, Saarbrücken (1992).

    Google Scholar 

  167. U. Herr, J. Jing, U. Gonser, and H. Gleiter, Solid State Commun. 76, 197 (1990).

    CAS  Google Scholar 

  168. G. Herzer and H. Warlimont, J. Nanostruct. Mater. 1, 263 (1992).

    CAS  Google Scholar 

  169. J. Karch, Ph.D. thesis, Universität des Saarlandes, Saarbrücken (1991).

    Google Scholar 

  170. J. Weissmueller, R. Birringer, and H. Gleiter, Phys. Lett. A 145, 130 (1990).

    CAS  Google Scholar 

  171. J. Jing, A. Krämer, R. Birringer, H. Gleiter, and U. Gonser, J. Non-Cryst. Solids 113, 167 (1989).

    CAS  Google Scholar 

  172. U. Gonser, Hyp. Interact. 68, 71 (1991).

    CAS  Google Scholar 

  173. A. Krämer, J. Jing, and U. Gonser, Hyp. Interact. 54, 591 (19901).

    Google Scholar 

  174. B. Hu, X. Zhang, Y. Fang, and X. Yang, Nucl. Instrum. Methods Phys. Res. B 76, 50 (1993).

    Google Scholar 

  175. J. Chadwick, R. J. Pollard, S. J. Campbell, and H. Gleiter, (in preparation).

    Google Scholar 

  176. Z. Valiev, R. R. Mulyukov, and V. V. Ovchinnikov, Philos. Mag. Lett. 62, 253 (1990).

    CAS  Google Scholar 

  177. J. Jing, X. Yang, Y. Hsia, and U. Gonser, Surf. Sci. 233, 351 (1990).

    CAS  Google Scholar 

  178. C. H. Griffiths, M. P. O’Horo, and T. W. Smith, J. Appl. Phys. 50, 7108 (1979).

    CAS  Google Scholar 

  179. S. J. Campbell, P. E. Clark, and P. R. Liddell, J. Phys. F 2, L114 (1972).

    CAS  Google Scholar 

  180. S. J. Campbell and P. E. Clark, J. Phys. F. 4, 1073 (1974).

    CAS  Google Scholar 

  181. K. Sumiyama and Y. Nakamura, in Rapidly Quenched Metals, S. Steeb and H. Warlimont, eds., p. 859, Elseyier, Amsterdam (1985).

    Google Scholar 

  182. C. A. Melendres, A. Narayanasamy, V. A. Maroni, and R. W. Siegel, J. Mater. Res. 4, 1246 (1989).

    CAS  Google Scholar 

  183. J. Jing, F. Zhao, X. Yang, and U. Gonser, Hyp. Interact. 54, 571 (1990).

    CAS  Google Scholar 

  184. A. M. van der Kraan, Phys. Status Solidi A 18, 215 (1973).

    Google Scholar 

  185. P. Ayyub, M. Maltani, M. Barma, V. R. Palkar, and R. Vijayaraghavan, J. Phys. C 21, 2229 (1988).

    CAS  Google Scholar 

  186. Q. A. Pankhurst and R. J. Pollard, in Mössbauer Spectroscopy Applied to Magnetism and Materials Science, Vol. 1, G. J. Long and F. Grandjean, eds., Plenum Press, New York, (1993).

    Google Scholar 

  187. X. Yang, J. Jing, H. Engelmann, and U. Gonser, Nuovo Cimento 12D, 35 (1990).

    CAS  Google Scholar 

  188. S. Linderoth, M. D. Bentzon, and S. Mørup, Nucl. Instrum. Methods Phys. Res. B 76, 173 (1993).

    Google Scholar 

  189. G. M. McColvin and M. J. Shaw, Mater. Sci. Forum 88–90, 235 (1992).

    Google Scholar 

  190. J. S. Benjamin, Mater. Sci. Forum 88–90, 1 (1992).

    Google Scholar 

  191. T. Tanaka, S. Nasu, K. N. Ishihara and P. H. Shingu, J. Less-Common Met. 171, 237 (1991).

    CAS  Google Scholar 

  192. P. H. Shingu, K. N. Ishihara, K. Uenishi, J. Kuyama, B. Huang, and S. Nasu, in Solid State Powder Processing, A. H. Claver and J. J. deBarbadillo, eds., p. 21, The Minerals, Metals and Materials Society, Warrendale, PA, USA, (1990).

    Google Scholar 

  193. P. H. Shingu, K. N. Ishihara, and J. Kuyama, Proc. 34th Jpn. Congr. Mater. Res., p. 19, Society of Materials Science, Kyoto (1991).

    Google Scholar 

  194. P. H. Shingu, in Proc. Conf. on Metastable Phase Formation in the Solid State, Irsee, Germany (1992).

    Google Scholar 

  195. Proc. Int. Symp. on Mechanical Alloying, Kyoto, Japan, May, 1991, Mater. Sci. Forum 88–90 (1992).

    Google Scholar 

  196. T. Tanaka, S. Nasu, K. Nakagawa, K. N. Ishihara, and P. H. Shingu, Mater. Sci. Forum 88–90, 269 (1992).

    Google Scholar 

  197. H. Kuwano, H. Ouyang, and B. Fultz, Mater. Sci. Forum 88–90, 561 (1992).

    Google Scholar 

  198. S. Nasu, S. Imaoka, S. Morimoto, H. Tanimoto, B. Huang, T. Tanaka, J. Kuyama, K. N. Ishihara, and P. H. Shingu, Mater. Sci. Forum 88–90, 569 (1992).

    Google Scholar 

  199. P. H. Shingu, B. Huang, J. Kuyama, K. N. Ishihara, and S. Nasu, in DGM Conference, New Materials by Mechanical Alloying Techniques (1988).

    Google Scholar 

  200. B. Fultz, G. Le Caër, and P. Matteazzi, J. Mater. Res. 4, 1450 (1989).

    CAS  Google Scholar 

  201. L. Lanotte and P. Mateazzi, J. Magn. Magn. Mater. 88, 58 (1990).

    CAS  Google Scholar 

  202. S. Nasu, P. H. Shingu, K. N. Ishihara, and F. E. Fujita, Hyp. Interact. 55, 1043 (1990).

    CAS  Google Scholar 

  203. W. H. Wang, K. Q. Xiao, Y. D. Dong, Y. Z. He, and G. M. Wang, J. Non-Cryst. Solids 124, 82 (1990).

    CAS  Google Scholar 

  204. G. M. Wang, D. Zhang, W. H. Wang, and Y. D. Dong, J. Magn. Magn. Mater. 97, 73 (1991).

    CAS  Google Scholar 

  205. Y. D. Dong, W. H. Wang, L. Liu, K. Q. Xiao, S. H. Tong, and Y. Z. He, Mater. Sci. Eng. A134, 867 (1991).

    CAS  Google Scholar 

  206. P. Mateazzi and G. Le Caër, Hyp. Interact. 68, 177 (1991).

    Google Scholar 

  207. S. Nasu, S. Morimoto, H. Tanimoto, B. Huang, T. Tanaka, J. Kuyama, K. N. Ishihara, and P. H. Shingu, Hyp. Interact. 67, 681 (1991).

    CAS  Google Scholar 

  208. J. Kuyama, H. Inui, S. Imaoko, S. Nasu, K. N. Ishihara, and P. H. Shingu, Jpn. J. Appl. Phys. 30, L854 (1991).

    CAS  Google Scholar 

  209. S. Nasu and P. H. Shingu, in Ordering and Disordering in Alloys, A. R. Yavari, ed., p. 402, Elsevier, Amsterdam (1992).

    Google Scholar 

  210. K. Uenishi, K. F. Kobayashi, S. Nasu, H. Hatano, K. N. Ishihara, and P. H. Shingu, Z. Metallk. 83, 132 (1992).

    CAS  Google Scholar 

  211. H. Okumura, K. N. Ishihara, P. H. Shingu, H. S. Park, and S. Nasu, J. Mater. Sci. 27, 153 (1992).

    CAS  Google Scholar 

  212. J. Jing, A. Calka, and S. J. Campbell, J. Phys. Condens. Matter 3, 7413 (1991).

    CAS  Google Scholar 

  213. J. Jing, S. J. Campbell, A. Calka, and A. V. J. Edge, Hyp. Interact. 69, 475 (1991).

    CAS  Google Scholar 

  214. G. Le Caër, P. Matteazzi, and B. Fultz, J. Mater. Res. 7, 1387 (1992).

    Google Scholar 

  215. S. J. Campbell, K. D. Jayasuriya, A. Calka, J. M. Cadogan, J. Jing, and E. Wu, in Proc. 7th Int. Symposium on Magnetic Anisotropy and Coercivity in Rare-Earth Transition Metal Alloys, Canberra, July, 1992, p. 68, Hi-Perm Laboratory, Research Centre for Advanced Mineral and Materials Processing, The University of Western Australia (printed Scott Four Colour Print, Perth, WA).

    Google Scholar 

  216. A. Calka, A. P. Pogany, R. A. Shanks, and H. Engelmann, Mater. Sci. Eng. A128, 107 (1990).

    CAS  Google Scholar 

  217. S. J. Campbell, K. D. Jayasuriya, A. Calka, and J. Jing, Nucl. Instrum. Methods Phys. Res. B 76, 81 (1993).

    Google Scholar 

  218. K. D. Jayasuriya, S. J. Campbell, A. Calka, and J. Jing, Nucl. Instrum. Methods Phys. Res. B 76, 85 (1993).

    Google Scholar 

  219. C. Suryanarayana, G.-H. Chen, and F. H. Froes, Scr. Metall. Mater. 26, 1727 (1992).

    CAS  Google Scholar 

  220. P. H. Duwez, R. H. Willens, and W. Klement, Jr., J. Appl. Phys. 31, 113 (1960).

    Google Scholar 

  221. K. Sumiyama, T. Yoshitake, and Y. Nakamuara, Acta Metall. 33, 1791 (1985).

    Google Scholar 

  222. Amorphous Metallic Alloys, F. E. Luborsky, ed., Butterworths, London (1983).

    Google Scholar 

  223. G. Le Caër and J. M. Dubois, J. Phys. E 12, 1082 (1982).

    Google Scholar 

  224. C. L. Chien and K. M. Unruh, Phys. Rev. B 25, 5790 (1982).

    CAS  Google Scholar 

  225. D.R. Maurice and T. H. Courtney, Metall. Trans. 21A, 289 (1990).

    CAS  Google Scholar 

  226. H. Hashimoto and R. Watanabe, Mater. Sci. Forum 88–90, 89 (1992).

    Google Scholar 

  227. M. Magini, Mater. Sci. Forum 88–90, 121 (1992).

    Google Scholar 

  228. S. Linderoth, Hyp. Interact. 68, 107 (1991).

    CAS  Google Scholar 

  229. J.-R. Cui, J. L. Dormann, C. Sella, and P. Renaudin, IEEE Trans. Magn. 18, 1589 (1982).

    Google Scholar 

  230. C. Djega-Mariadassou, J. L. Dormann, L. Bessais, P. Renaudin, E. Agostinelli, and D. Fiorani, Hyp. Interac. 55, 933 (1990).

    CAS  Google Scholar 

  231. J. Jiang, F. Zhao, P. Gao, I. Dézsi, and U. Gonser, Hyp. Interact. 55, 981 (1990).

    CAS  Google Scholar 

  232. M. Ghafari, J. Saida, and Y. Nakamura, Hyp. Interact. 69, 595 (1991).

    CAS  Google Scholar 

  233. F.-S. Li, D.-S. Xue, M.-Z. Mao, and Y.-D. Zhang, Hyp. Interact. 69, 651 (1991).

    CAS  Google Scholar 

  234. M. Ghafari, J. Saida, R. A. Brand, and Y. Nakamura, Hyp. Interact. 69, 599 (1991).

    CAS  Google Scholar 

  235. Y. Xu, X. Yang, X. Wu, C. Ye, and H. Jiang, Hyp. Interact. 69, 681 (1991).

    CAS  Google Scholar 

  236. Z. Hu, J. Shen, L. Zhang, Y. Chen, and Y. Hsia, Hyp. Interact. 69, 693 (1991).

    CAS  Google Scholar 

  237. S. Linderoth and S. Mørup, J. Appl. Phys. 69, 5256 (1991).

    CAS  Google Scholar 

  238. P. V. Hendriksen, S. Mørup, and S. Linderoth, Hyp. Interact. 70, 1079 (1992).

    CAS  Google Scholar 

  239. S. Linderoth, J. Magn. Magn. Mater. 104–107, 128 (1992).

    Google Scholar 

  240. S. Linderoth, J. Magn. Magn. Mater. 104–107, 167 (1992).

    Google Scholar 

  241. First Int. Conf. on Nanostructured Materials, Cancun, September, 1992.

    Google Scholar 

  242. Nanostructured Materials, companion journal to Acta Metallurgica and Scripta, Metallurgica et Materiala, Pergamon Press, New York.

    Google Scholar 

  243. S. J. Campbell and F. Aubertin, in Mössbauer Spectroscopy Applied to Inorganic Chemistry, G. J. Long and F. Grandjean, eds., p. 183, Plenum Press, New York (1989).

    Google Scholar 

  244. T. Zemčik, F. Aubertin, and U. Goner, J. Mater. Sci. (submitted).

    Google Scholar 

  245. Nuclear Zeeman Effect and Recent Advances in Mössbauer Spectroscopy, Proc. Int. Workshop in honor of Prof. S. S. Hanna, P. Boolchand, ed., Hyp. Interact. 72, 1992.

    Google Scholar 

  246. Mössbauer Spectroscopy II, U. Gonser, ed., Topics in Current Physics 25, Springer-Veralg, Berlin (1981).

    Google Scholar 

  247. O. Schneeweiss, Mater. Lett. 11, 43 (1991).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Campbell, S.J., Gleiter, H. (1993). Mössbauer Effect Studies of Nanostructured Materials. In: Long, G.J., Grandjean, F. (eds) Mössbauer Spectroscopy Applied to Magnetism and Materials Science. Modern Inorganic Chemistry, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2409-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2409-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2411-7

  • Online ISBN: 978-1-4899-2409-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics