Influence of Ozone Depletion on the Incidence of Skin Cancer

Quantitative Prediction
  • Frank R. de Gruijl
  • Jan C. Van der Leun


As with many environmental problems, a quantitative assessment of the biological effects of a stratospheric ozone depletion stretches science beyond the limits of directly verifiable statements. The scientist should take care not to become the modern soothsayer reading the high-tech equivalent of a goat’s entrails, providing authoritative answers to those “seeking guidance.” The prognoses may take decades to become detectable, and then the forecasted effects can be obscured by many interfering factors. The premise of céleris paribus (other things being equal) will almost surely not be met. To a skeptic such a forecasting exercise may seem scientifically futile, but it need not be if cause (ozone depletion) and effects (e.g., skin cancer) are properly monitored together with possible modifying factors (e.g., behavioral changes). Moreover, if there are data available which can be pieced together to arrive at quantitative estimates of environmental impacts, the scientist has the moral obligation to speak up and give the expected magnitudes of effects. Thus, governmental officials, administrators, and politicians are provided with the best possible information for a well-balanced environmental policy.


Skin Cancer Action Spectrum Ozone Depletion Stratospheric Ozone Wavelength Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D. E., and Rice, J. M., 1987, Tumorigenesis in athymic nude mice skin by chemical carcinogenesis and ultraviolet light, J. Nat. Cancer Inst. 78:125–134.PubMedGoogle Scholar
  2. Blum, H. F., 1959, Carcinogenesis by Ultraviolet Light, Princeton University Press, Princeton, NJ.Google Scholar
  3. Coebergh, J. W. W., Neumann, H. A. M., Vrints, L. W., Van der Heijden, L., Meijer, W. J., and Verhagen-Teulings, M. Th., 1991, Trends in the incidence of non-melanoma skin cancer in the SE Netherlands 1975–1988: A registry-based study, Br. J. Dermatol. 125:353–359.PubMedCrossRefGoogle Scholar
  4. Cole, C., Forbes, P. D., and Davies, R. E., 1986, An action spectrum for photocarcinogenesis, Photochem. Photobiol. 43:275–284.PubMedCrossRefGoogle Scholar
  5. De Gruijl, F. R., 1982, The Dose-Response Relationship for UV Tumorigenesis, Ph.D. thesis, University of Utrecht, pp. 2-5, 51-63.Google Scholar
  6. De Gruijl, F. R., 1989, Ozone change and melanoma, in: Atmospheric Ozone and Its Policy Implications (T. Schneider et al., eds.), Elsevier, Amsterdam, pp. 813–821.Google Scholar
  7. De Gruijl, F. R., and Van der Leun, J. C., 1980, A dose-response model for skin cancer induction by chronic UV exposure of a human population, J. Theor. Biol. 83:487–504.PubMedCrossRefGoogle Scholar
  8. De Gruijl, F. R., and Van der Leun, J. C., 1982, Effect of chronic UV exposure on epidermal transmission in mice, Photochem. Photobiol. 36:433–438.PubMedCrossRefGoogle Scholar
  9. De Gruijl, F. R., and Van der Leun, J. C., 1991, Development of skin tumors in hairless mice after discontinuation of ultraviolet irradiation, Cancer Res. 51:979–984.PubMedGoogle Scholar
  10. De Gruijl, F. R., and Van der Leun, J. C., 1992, Action spectra for carcinogenesis, in: The Biologic Effects of UVA Radiation (F. Urbach, ed.), Valdemar, Overland Park, Kansas, pp. 91–98.Google Scholar
  11. De Gruijl, F. R., Van der Meer, J. B., and Van der Leun, J. C., 1983, Dose-time dependency of tumor formation by chronic UV exposure, Photochem. Photobiol. 37:53–62.PubMedCrossRefGoogle Scholar
  12. De Gruijl, F. R., Sterenborg, H. I. C. M., Forbes, P. D., Davies, R. E., Cole, C., Keifkens, G., Van Weelden, H., Slaper, H., and Van der Leun, J. C., 1993, Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice, Cancer Res. 53:53–60.PubMedGoogle Scholar
  13. Donawho, C. K., and Kripke, M. L., 1991, Evidence that the local effect of ultraviolet radiation on the growth of murine melanomas is immunologically mediated, Cancer Res. 51:4176–4181.PubMedGoogle Scholar
  14. Dubreuilh, W., 1896, Des hyperkeratoses circonscriptes, Ann. Dermatol. Syphiligr. (Paris) 7:1158–1204.Google Scholar
  15. Fears, T. R., Scotto, J., and Schneiderman, M. A., 1977, Mathematical models of age and ultraviolet effects on the incidence of skin cancer among whites in the United States, Am. J. Epidemiol. 105:420–427.PubMedGoogle Scholar
  16. Findlay, G. M., 1928, Ultraviolet light and skin cancer, Lancet 2:1070–1073.CrossRefGoogle Scholar
  17. Forbes, P. D., Davies, R. E., and Urbach, F., 1978, Experimental ultraviolet photocarcinogenesis: Wavelength interactions and time-dose relationship, in: NCI Monograph 50 (M. L. Kripke, and E. R. Sass, eds.), NCI, Bethesda, MD, pp. 31–38.Google Scholar
  18. Freeman, N. R., Fairbrother, G. E., and Rose, R. J., 1982, Survey of skin cancer incidence in the Hamilton area, N. Z. Med. J. 95:529–533.PubMedGoogle Scholar
  19. Gallagher, R. P., Ma, B., MacLean, D. I., Yang, C. P., Ho, V., Carruthers, J. A., and Warshawki, L. M., 1990, Trends in basal cell carcinoma, squamous cell carcinoma, and melanoma of the skin from 1973 through 1987, J. Am. Acad. Dermatol. 23:413–421.PubMedCrossRefGoogle Scholar
  20. Green, A. E. S., and Hedinger, R. A., 1978, Models relating ultraviolet light and non-melanoma skin cancer incidences, Photochem. Photobiol. 28:283–291.PubMedCrossRefGoogle Scholar
  21. Hardie, I. R., Strong, R. W., Hartley, L. C. J., Woodruff, P. W. H., Clunie, G. J. A., 1980, Skin cancer in Caucasian renal allograft recipients living in a subtropical climate, Surgery 87:177–180.PubMedGoogle Scholar
  22. Harteveld, M. M., Bouwes Bavinck, J. N., Kootte, A. M. M., Vermeer, B. J., and Vandenbroucke, J. P., 1990, Incidence of skin cancer after renal transplantation in the Netherlands, Transplantation 49:506–509.CrossRefGoogle Scholar
  23. Holman, C. D. J., and Armstrong, B. K., 1984, Cutaneous malignant melanoma and indicators of total accumulated exposure to the sun: An analysis separating histogenic types, J. Natl. Cancer Inst. 73:75–82.PubMedGoogle Scholar
  24. Hueper, W. C., 1942, Morphological aspects of experimental actinic and arsenic carcinomas in the skin of rats, Cancer Res. 2:551–559.Google Scholar
  25. Husain, Z., Pathak, M. A., Flotte, T., and Wick, M. M., 1991, Role of ultraviolet radiation in the induction of melanocytic tumors in hairless mice following 7,12-dimethylbenz(a)anthracene application and ultraviolet irradiation, Cancer Res. 51:4964–4970.PubMedGoogle Scholar
  26. IARC, 1992, Solar and Ultraviolet Radiation. Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 55, International Agency for Research on Cancer, Lyon, France.Google Scholar
  27. Kalbfleisch, J. G., 1979, Probability and Statistical Inference I, Springer Verlag, New York.Google Scholar
  28. Kelfkens, G., De Gruijl, F. R., and Van der Leun, J. C., 1990, Ozone depletion and increase in annual carcinogenic ultraviolet dose, Photochem. Photobiol. 52:819–823.PubMedCrossRefGoogle Scholar
  29. Kubitschek, H. E., Baker, K. S., and Peak, M. J., 1986, Enhancement of mutagenesis and human skin cancer rates resulting from increased fluences of solar ultraviolet radiation, Photochem. Photobiol. 43:443–447.PubMedCrossRefGoogle Scholar
  30. Levi, F., Vecchia, C. L., Te, V. C., and Mezzanotte, G., 1988, Descriptive epidemiology of skin cancer in the Swiss canton of Vaud, Int. J. Cancer 48:811–816.CrossRefGoogle Scholar
  31. Ley, R. D., Applegate, L. A., Padilla, R. S., and Stuart, T. D., 1989, Ultraviolet radiation-induced malignant melanoma in Monodelphis domestica, Photochem. Photobiol. 50:1–5.PubMedCrossRefGoogle Scholar
  32. Longstreth, J. D., De Gruijl, F. R., Takizawa, Y., and Van der Leun, J. C., 1991, Human health, Chap. 2 in UNEP report Environmental Effects of Ozone Depletion: 1991 Update (J. C. Van der Leun, and M. Tevini, eds.), UNEP, Nairobi, Kenya, pp. 15-24.Google Scholar
  33. Magnus, K., 1973, Incidence of malignant melanoma of the skin in Norway, 1955–1970, variations in time and space and solar radiation, Cancer 32:1275–1286.PubMedCrossRefGoogle Scholar
  34. McDonald, J. E., 1971, Statement submitted at hearings before the House Subcommittee on Transportation, in: Cong. Rec. 117(39), p. 3493.Google Scholar
  35. McKnight, C. K., and Magnussen, B., 1979, Tumours in Iceland, Acta Pathol. Microbiol. Scand. Sect. A 87:37–44.Google Scholar
  36. Moan, J., Dahlback, A., Hendriksen, T., and Magnus, K., 1989, Biological amplification factor for sunlight-induced nonmelanoma skin cancer at high latitudes, Cancer Res. 49:5207–5212.PubMedGoogle Scholar
  37. Molina, M. J., and Rowland, F. S., 1974, Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone, Nature 249:810–812.CrossRefGoogle Scholar
  38. Morison, W. L., Jerdan, M. S., Hoover, T. L., and Farmer, E. R., 1986, UV radiation-induced tumors in haired mice: Identification as squamous cell carcinomas, J. Natl. Cancer Inst. 77: 1155–1162.PubMedGoogle Scholar
  39. Parrish, J. A., Jaenicke, K. F., and Anderson, R. R., 1982, Erythema and melanogenesis action spectra of normal skin, Photochem. Photobiol. 40:485–494.Google Scholar
  40. Pike, M. C., 1966, A method of analysis of a certain class of experiments in carcinogenesis, Biometrics 22:142–161.PubMedCrossRefGoogle Scholar
  41. Roffo, A. H., 1939, Über die physikalische Aetiologie der Krebskrankheit, Strahlentherapie 66: 328–350.Google Scholar
  42. Rundel, R. D., and Nachtwey, D. S., 1983, Projections of increased non-melanoma skin cancer incidence due to ozone depletion, Photochem. Photobiol. 38:577–591.PubMedCrossRefGoogle Scholar
  43. Scotto, J., and Fears, T. R., 1981, Incidence of Nonmelanoma Skin Cancer in the United States, publ. no. NIH 82-2433, U.S. Dept. of Health and Human Services, Washington, DC.Google Scholar
  44. Scotto, J., and Fears, T. R., 1987, The association of solar ultraviolet and skin melanoma incidence among Caucasians in the United States, Cancer Investig. 5:275–283.Google Scholar
  45. Scotto, J., Pitcher, H., and Lee, J. A. H., 1991, Indications of future decreasing trends in skin melanoma mortality among whites in the United States, Int. J. Cancer 49:490–497.PubMedCrossRefGoogle Scholar
  46. Setlow, R. B., 1974, The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis, Proc. Natl. Acad. Sci. U.S.A. 71:3363–3366.PubMedCrossRefGoogle Scholar
  47. Setlow, R. B., Woodhead, A. D., and Grist, E., 1989, Animal model for ultraviolet radiation-induced melanoma: Platyfish-swordtail hybrid, Proc. Natl. Acad. Sci. U.S.A. 86:8922–8926.PubMedCrossRefGoogle Scholar
  48. Silverstone, H., and Searle, J. H. A., 1970, The epidemiology of skin cancer in Queensland: Influence of phenotype and environment, Br. J. Cancer 24:235–252.PubMedCrossRefGoogle Scholar
  49. Slaper, H., 1987, Action spectra for photocarcinogenesis, Chap. 7 in: Skin Cancer and UV Exposure: Investigations on the Estimation of Risk, Ph.D. thesis, University of Utrecht, pp. 147-152.Google Scholar
  50. Sterenborg, H. J. C. M., and Van der Leun, J. C., 1987, Action spectra for tumorigenesis by ultraviolet radiation, in: Human Exposure to Ultraviolet Radiation: Risks and Regulations (W. F. Passchier and B. F. M. Bosnjakovic, eds.), Elsevier, Amsterdam, pp. 173–190.Google Scholar
  51. Stern, R. S., Laird, N., Melski, J., Parrish, J. A., Fitzpatrick, T. B., and Bleich, H. L., 1984, Cutaneous squamous cell carcinoma in patients treated with PUVA, N. Engl. J. Med. 310: 1156–1161.PubMedCrossRefGoogle Scholar
  52. Unna, P., 1894, Histopathologie der Hautkrankheiten, August Hirschwald, Berlin.Google Scholar
  53. Van der Leun, J. C., and Daniels, F., 1975, Biological effects of stratospheric ozone decrease: A critical review of assessments, in: CIAP Monograph 5 Part 1, Chapter 7, Appendix B (D. S. Nachtwey, ed.), Dept. of Transportation, Washington, DC, pp. 105–124.Google Scholar
  54. Venzon, D. J., and Moolgavkar, S. H., 1984, Cohort analysis of malignant melanoma in five countries, Am. J. Epidemiol. 119:62–70.PubMedGoogle Scholar
  55. Vitaliano, P. P., and Urbach, F., 1980, The relative importance of risk factors in nonmelanoma carcinoma, Arch. Dermatol. 116:454–456.PubMedCrossRefGoogle Scholar
  56. Vitasa, B. C., Taylor, H. R., Strickland, P. J., Rosenthal, F. S., West, S., Abbey, H., Ng, S. K., Munoz, B., and Emmett, E. A., 1990, Association of nonmelanoma skin cancer and actinic keratosis with cumulative solar ultraviolet exposure in Maryland watermen, Cancer 65:2811–2817.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Frank R. de Gruijl
    • 1
  • Jan C. Van der Leun
    • 1
  1. 1.Institute of DermatologyUniversity HospitalUtrechtThe Netherlands

Personalised recommendations