Pharmacological Studies of Novel Marine Metabolites

  • Robert S. Jacobs
  • Mary A. Bober
  • Isabel Pinto
  • Allen B. Williams
  • Peer B. Jacobson
  • Marianne S. de Carvalho


Fundamental to the complex process associated with drug discovery is the establishment of a carefully defined collaborative relationship between academic bioorganic chemists and cellular or molecular pharmacologists. We mention this as a new emerging direction in research that should be particularly emphasized in an academic setting. The collaborative goal of the academic chemists and pharmacologists should be to contribute in some specific way to the advancement of each other’s science. Educational goals are not served well through routine programs for isolating and screening natural products. Screening programs of this kind are well developed in U.S. and foreign drug companies. In fact, new molecular receptor assays that allow a wide variety and large number of screens to be executed rapidly are becoming available. Academic pharmacologists have the responsibility to develop knowledge fundamental to advancing biomedical science by using bioactive substances as probes to better understand normal and pathological biological processes, to define in rigorous fashion the properties of these probes, and to determine their biochemical limitations and how they can be used properly and safely.


Arachidonic Acid Phorbol Myristate Acetate Cytochrome P450 Enzyme Phorbol Myristate Acetate Arachidonic Acid Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, T. J., 1990, The effects of manganese and changes in internal calcium on Na+—Ca+ exchange fluxes in the intact squid giant axon, Biochim. Biophys. Acta 1030: 101–110.PubMedCrossRefGoogle Scholar
  2. Bauer, F. W, van der Kerkhof, P. C., and Massen-de Grood, R. M., 1986, Epidermal hyperproliferation following the induction of microabscesses by leukotriene B4, Br. J. Dermatol. 114: 409–412.PubMedCrossRefGoogle Scholar
  3. Beck, W. T., 1987, The cell biology of multiple drug resistance, Biochem. Pharmacol. 36 (18): 2879–2887.PubMedCrossRefGoogle Scholar
  4. Bellamy, W. T, Dalton, W. S., Kailey, J. M., Gleason, M. C., McCloskey, T. M., Dorr, R. T, and Alberts, D. S., 1988, Verapamil reversal of doxorubicin resistance in multidrug-resistant human myeloma cells and association with drug accumulation and DNA damage, Cancer Res. 48 (22): 6365–6370.PubMedGoogle Scholar
  5. Biedler, J. L., and Meyers, M. B., 1989, Multidrug resistance (vinca alkaloids, actinomycin D, and anthracycline antibiotics), Drug Resist. Mamm. Cell 2: 57–58.Google Scholar
  6. Bonney, R. J., Wightman, P. D., Dahlgren, M. E., Davies, P., Kuehl, F. A., and Humes, J., 1980, Effect of RNA and protein synthesis inhibitors on the release of inflammatory mediators by macrophages responding to phorbol myristate acetate, Biochim. Biophys. Acta 633: 410–421.PubMedCrossRefGoogle Scholar
  7. Burgess, J. R., de la Rosa, R. I., Jacobs, R. S., and Butler, A., 1991, A new eicosapentaenoic acid formed from arachidonic acid in the coralline red algae Bossiella orbigniana, Lipids 26: 162–165.CrossRefGoogle Scholar
  8. Busselberg, D., Evans, M. L., Rahmann, H., and Carpenter, D., 1991, Lead and zinc block a voltage-activated calcium channel of Aplysia neuron, J. Neurophysiol. 65: 786–795.PubMedGoogle Scholar
  9. Bruno, N. A., Carver, L. A., and Slate, D. L., 1990, Isolation and characterization of doxorubicinresistant Lewis lung carcinoma variants, Cancer Commun. 2 (4): 151–158.PubMedGoogle Scholar
  10. Calignano, A., Piomelli, D., Sacktor, T. C., and Swartz, J. H., 1991, A phospholipase A2 stimulating protein regulated by protein kinase C in Aplysia neurons, Brain Res. Mol. Brain Res. 9 (4): 347–351.PubMedCrossRefGoogle Scholar
  11. Center, M. S., 1988, Mechanisms regulating cell resistance to adriamycin, Biochem. Pharmacol. 34: 1471–1476.CrossRefGoogle Scholar
  12. Chan, H. S., Bradley, G., Thorner, P, Haddad, G., Gallie, B. L., and Ling, V, 1988, Methods in laboratory investigation: A sensitive method for immunocytochemical detection of P-glycoprotein in multidrug-resistant human ovarian-carcinoma cell-lines, Lab. Invest. 59 (6): 870–875.PubMedGoogle Scholar
  13. Cimino, G., De Stefano, S., and Minale, L., 1974, Scalaradial, a third sesterterpene with the tetracarbocyclic skeleton of scalarin, from the sponge Cacospongia mollior, Experientia 30: 846–847.Google Scholar
  14. Culver, P, and Jacobs, R. S., 1981, Lophotoxin: A neuromuscular toxin from the sea whip (Lophogorgia rigida), Toxicon 6: 825–830.CrossRefGoogle Scholar
  15. De Carvahlo, M. S., and Jacobs, R. S., 1991, Two step inactivation of bee venom PLA2 by scalardial, J. Biochem. Pharmacol. 42 (B): 1621–1626.CrossRefGoogle Scholar
  16. De Freitas, J. C., Blankemeier, L. A., and Jacobs, R. S., 1984, In vitro inactivation of the neurotoxic action of 3-bungarotoxin by the marine natural product, manoalide, Experientia 40(7):864–865.Google Scholar
  17. Degnan, B. M., Hawkins, C. J., Lavin, M. F., McCaffrey, E. J., Parry, C. L., Vandenbrenk, A. L., and Wafters, D. J., 1989a, New cyclic-peptides with cyto-toxic activity from the ascidian LissoclinumPatella, J. Med. Chem. 32 (6): 1349–1354.PubMedCrossRefGoogle Scholar
  18. Degnan, B. M., Hawkins, C. J., Lavin, M. F., McCaffrey, E. J., Parry, C. L., and Wafters, D. J., 1989b, Novel cyto-toxic compounds from the ascidian Lissoclinum-Bistratum, J. Med. Chem. 32 (6): 1354–1359.PubMedCrossRefGoogle Scholar
  19. Dixon, R. A., Diehl, R. E., Opas, E. E., Rands, E., Vickers, P. J., Evans, J. F, Gillard, J. W, and Miller, D. K., 1990, Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis, Nature 343: 282–284.PubMedCrossRefGoogle Scholar
  20. Escalante, B., Erlij, D., Falck, J. R., and McGiff, J. C., 1991, Effect of cytochrome P450 arachidonate metabolites on ion transport in rabbit kidney loop of Henle, Science 251: 799–802.PubMedCrossRefGoogle Scholar
  21. Ettouati, W. S., and Jacobs, R. S., 1987, Effect of pseudopterosin A on cell division, cell cycle progression, DNA, and protein synthesis in cultured sea urchin embryos, Mol. Pharmacol. 31: 500–505.PubMedGoogle Scholar
  22. Fenical, W, Okuda, R. K., Bandurraga, M. M., Culver, P., and Jacobs, R. S., 1981, Lophotoxin: A novel neuromuscular toxin from Pacific sea whips of the genus Lophogorgia, Science 212: 1512.PubMedCrossRefGoogle Scholar
  23. Fishman, H. M., and Lipicky, R. J., 1991, Determination of K+-channel relaxation times in squid axon membranes by Hodgkin—Huxley and direct linear analysis, Biophys. Chem. 39: 177–190.PubMedCrossRefGoogle Scholar
  24. Ford, J. M., and Hait, W. N., 1990, Pharmacology of drugs that alter multidrug resistance in cancer, Pharmacol. Rev. 42: 155–190.PubMedGoogle Scholar
  25. Fox, G. W., Kriebel, M. E., and Pappas, G. D., 1990, Morphological, physiological and biochemical observation on skate electric organ, Anat. Embryol. 18: 305–315.Google Scholar
  26. Ghiara, P., Meli, T., Parente, L., and Persico, P, 1984, Distinct inhibition of membrane bound and lysosomal phospholipase A2 by glucocorticoid-induced proteins, Biochem. Pharmacol. 33: 1445–1450.PubMedCrossRefGoogle Scholar
  27. Glaser, K. B., and Jacobs, R. S., 1986, Molecular pharmacology of manoalide; inactivation of bee venom phospholipase A2, Biochem. Pharmacol. 35: 449–453.PubMedCrossRefGoogle Scholar
  28. Glaser, K. B., de Carvalho, M. S., Jacobs, R. S., Kernan, M. R., and Faulkner, D. J., 1989, Manoalide: Structure—activity studies and definition of the pharmacophore for phospholipase A2 inactivation, Mol. Pharmacol. 36: 782–788.PubMedGoogle Scholar
  29. Goodman Gilman, A., Goodman, S. S., Rall, W. T., and Murad, F., 1985, The Pharmacological Basis of Therapeutics, 7th ed., Macmillan, New York.Google Scholar
  30. Gottesman, M. M., 1988, Multidrug resistance during chemical carcinogenesis: A mechanism revealed, J. Natl. Cancer Inst. 80 (17): 1352–1353.PubMedCrossRefGoogle Scholar
  31. Hermanowicz, A., Gibson, P. R., and Jewell, D. P., 1985, The role of phagocytes in inflammatory bowel disease, Clin. Sci. 69: 2241–2249.Google Scholar
  32. Huet, S., and Robert, J., 1988, The reversal of doxorubicin resistance by verapamil is not due to an effect on calcium channels, Int. J. Cancer 41 (2): 283–286.PubMedCrossRefGoogle Scholar
  33. Kernan, M. R., Faulkner, D. J., Parkanyi, L., Clardy, J., de Carvalho, M. S., and Jacobs, R. S., 1989, Luffolide, a novel anti-inflammatory terpene from the sponge Luffariella sp., Experientia 45: 388–390.PubMedCrossRefGoogle Scholar
  34. Kessel, D., and Wilberding, C., 1984, Mode of action of calcium antagonists which alter anthracycline resistance, Biochem. Pharmacol. 33 (7): 1157–1160.PubMedCrossRefGoogle Scholar
  35. Lewis, R. A., and Austen, K. F.,1984, The biologically active leukotrienes: Biosynthesis, metabolism, receptors, functions, and pharmacology, J. Clin. Invest. 73: 889–897.Google Scholar
  36. Look, S. A., Fenical, W, Jacobs, R. S., and Clardy, J., 1986, The pseudopterosins: Anti-inflammatory and analgesic natural products from the sea whip Pseudopterogorgia elisabethae, Proc. Natl. Acad. Sci. USA 83: 6238–6240.PubMedCrossRefGoogle Scholar
  37. Melancon, M. J., Yeo, S. E., and Lech, J., 1986, Induction of hepatic microsomal monooxygenase activity in fish by exposure to river water, Environmental Toxicology and Chemistry 6: 127–135.CrossRefGoogle Scholar
  38. Moghaddam, M. F, Gerwick, W. H., and Ballantine, D. L., 1990, Discovery of the mammalian insulin release modulator, hepoxilin B3, from the tropical red algae Platysiphonia miniata and Cottoniella filamentosa, J. Biol. Chem. 265: 6126–6130.PubMedGoogle Scholar
  39. O’Brien, E. T., Asai, D. J., Groweiss, A., Lipshutz, B. H., Fenical, W, Jacobs, R. S., and Wilson, L., 1986, Mechanism of action of the marine natural product stypoldione: Evidence for reaction with sulfhydryl groups, J. Med. Chem. 29: 1829–1851.Google Scholar
  40. Ozols, R. F., Cunnion, R. E., Klecker, R. W, Hamilton, T. C., Ostchega, Y., Parrillo, J. E., and Young, R. C., 1987, Verapamil and adriamycin in the treatment of drug-resistant ovarian-cancer patients, J. Clin. Oncol. 5 (4): 641–647.PubMedGoogle Scholar
  41. Pastan, I., Gottesman, M., Kahn, C. R., Flier, J., and Eder, P., 1987, Multiple-drug resistance in human cancer, N. Engl. J. Med. 316 (22): 1388–1393.PubMedCrossRefGoogle Scholar
  42. Piomelli, D., 1991, Metabolism of arachidonic acid in the nervous system of marine mollusk, Aplysia californic, Am. J. Physiol. 260 (5Pt2): R844–848.PubMedGoogle Scholar
  43. Raz, A., Wyche, A., and Needleman, P., 1989, Temporal and pharmacological division of fibroblast cyclooxygenase expression into transcriptional and translational phases, Proc. Natl. Acad. Sci. USA 86: 1657–1661.PubMedCrossRefGoogle Scholar
  44. Rouzer, C. A., Matsumoto, T., and Samuelsson, B., 1986, Single protein from human leukocytes possesses 5-lipoxygenase and leukotriene A4 synthase activities, Proc. Natl. Acad. Sci. USA 83: 857–861.PubMedCrossRefGoogle Scholar
  45. Schlondorff, D., Petty, E., Oates, J. A., Jacoby, M., and Levine, S. D., 1987, Epoxygenase metabolites of arachidonic acid inhibit vasopressin response in toad bladder, Am. J. Physiol. 253: F464 - F470.PubMedGoogle Scholar
  46. Schwartzman, M. L., Balazy, M., Masferrer, J., Abraham, N. G., McGiff, J. C., and Murphy, R. C., 1987, 12 (R)-hydroxyicosatetraenoic acid: A cytochrome-P450-dependent arachidonate metabolite that inhibits Na+,K+-ATPase in the cornea, Proc. Natl. Acad. Sci. USA 84: 8125–8129.Google Scholar
  47. Staats, J., Marquardt, D., and Center, M. S., 1990, Characterization of a membrane-associated protein kinase of multidrug-resistant HL60 cells which phosphorylates p-glycoprotein, J. Biol. Chem. 265: 4084 4090.Google Scholar
  48. Stegeman, J. J., and Lech, J., 1991, P-450 monooxygenase systems in aquatic species: Carcinogen metabolism and biomarkers for carcinogen and pollutant exposure, Environmental Health Perspectives 90: 101–190.PubMedCrossRefGoogle Scholar
  49. Vane, J. R., 1971, Inhibition of prostaglandin synthesis as a mechanism for aspirin-like drugs, Nature New Biol. 231 (25): 232–235.PubMedGoogle Scholar
  50. Werns, S. W, and Lucchessi, B. R., 1987, Inflammation and myocardial infarction, Br. Med. Bull. 43: 460–471.PubMedGoogle Scholar
  51. Wijkander, J., and Sundler, R. A., 1989, A phospholipase A2 hydrolyzing arachidonyl-phospholipids in mouse peritoneal macrophages, FEBS Leu. 244: 51–56.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Robert S. Jacobs
    • 1
  • Mary A. Bober
    • 1
  • Isabel Pinto
    • 1
  • Allen B. Williams
    • 1
  • Peer B. Jacobson
    • 1
  • Marianne S. de Carvalho
    • 1
  1. 1.Marine Science Institute, and Department of Biological SciencesUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations