Advertisement

A Molecular View of Primate Supraordinal Relationships from the Analysis of Both Nucleotide and Amino Acid Sequences

  • Michael J. Stanhope
  • Wendy J. Bailey
  • John Czelusniak
  • Morris Goodman
  • Jing-Sheng Si
  • John Nickerson
  • John G. Sgouros
  • Gamal A. M. Singer
  • Traute K. Kleinschmidt
Part of the Advances in Primatology book series (AIPR)

Abstract

The fossil record suggests that the orders of eutherian mammals arose in a burst of adaptive radiation at the dawn of the Cenozoic (Savage and Russell, 1983). Possibly because of the apparent bushlike pattern of this radiation, establishing the course of phylogenetic branching that led to the orders and suborders of eutherian mammals has proven difficult. Although some regard this radiation as an almost simultaneous emergence of major clades (Simpson, 1978), most feel that such phylogenies are not actually bushlike (Gingerich, 1985; Novacek, 1990), although several splitting events may be close enough in time and in character to represent a considerable challenge for molecular and morphological analyses.

Keywords

Parsimonious Tree Giant Panda Eutherian Mammal Tree Shrew Amino Acid Sequence Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adkins, R. M., and Honeycutt, R. L. 1991. Molecular phylogeny of the superorder Archonta. Proc. Natl. Acad. Sci. USA 88:10317–10321.PubMedCrossRefGoogle Scholar
  2. Ammerman, L. K., and Hillis, D. M. 1992. A molecular test of bat relationships: Monophyly or diphyly? Syst. Biol. 41:222–232.Google Scholar
  3. Bailey, W. J., Slightom, J. L., and Goodman, M. 1992. Rejection of the “flying primate” hypothesisby phylogenetic evidence from the e-globin gene. Science 256:86–89.PubMedCrossRefGoogle Scholar
  4. Baker, R. J., Honeycutt, R. L., and Van Den Bussche, R. A. 1991a. Examination of monophyly of bats: Restriction map of the ribosomal DNA cistron. Bull. Am. Mus. Nat. Hist. 206:42–53.Google Scholar
  5. Baker, R. J., Novacek, M. J., and Simmons, N. B. 1991b. On the monophyly of bats. Syst. Zool. 40:216–231.CrossRefGoogle Scholar
  6. Beard, K. C. 1990. Gliding behaviour and palaeoecology of the alleged primate family Par- omomyidae (Mammalia, Dermoptera). Nature 345:340–341.CrossRefGoogle Scholar
  7. Beintema, J. J., Rodewald, K., Braunitzer, G., Czelusniak, J., and Goodman, M. 1991. Studies on the phylogenetic position of the Ctenodactylidae (Rodentia). Mol. Biol. Evol. 8:151–154.PubMedGoogle Scholar
  8. Borst, D. E., and Nickerson, J. M. 1988. The isolation of a gene encoding interphotoreceptor retinoid-binding protein. Exp. Eye Res. 47:825–838.PubMedCrossRefGoogle Scholar
  9. Borst, D. E., Redmond, T. M., Elser, J. E., Gonda, M. A., Wiggert, B., Chader, G. J., and Nickerson, J. M. 1989. Interphotoreceptor retinoid-binding protein: Gene characterization, protein repeat structure, and its evolution. J. Biol. Chem. 264:1115–1123.PubMedGoogle Scholar
  10. Bugge, J. 1985. Systematic value of the carotid arterial pattern in rodents, in: W. P. Luckett and J.- L. Hartenberger (eds.), Evolutionary Relationships among Rodents: A Multidisciplinary Analysis, pp. 355–379. Plenum Press, New York.Google Scholar
  11. Bulmer, M., Wolfe, K. H., and Sharp, P. M. 1991. Synonomous nucleotide substitution rates in mammalian genes: Implications for the molecular clock and the relationships of mammalian orders. Proc. Natl. Acad. Sci. USA 88:5974–5978.PubMedCrossRefGoogle Scholar
  12. Cartmill, M., and MacPhee, R. D. E. 1980. Tupaiid affinities: The evidence of the carotid arteries and cranial skeleton, in: W. P. Luckett (ed.), Comparative Biology and Evolutionary Relationships of Tree Shrews, pp. 95–132. Plenum Press, New York.CrossRefGoogle Scholar
  13. Collins, F., and Weissman, S. 1984. The molecular genetics of human hemoglobin. Prog. Nucleic Acid Res. Mol. Biol. 31:315–439.PubMedCrossRefGoogle Scholar
  14. Cronin, J. E., and Sarich, V. M. 1980. Tupaiid and Archonta phylogeny: The macromolecular evidence, in: W. P. Luckett (ed.), Comparative Biology and Evolutionary Relationships of Tree Shrews, pp. 293–312. Plenum Press, New York.CrossRefGoogle Scholar
  15. Czelusniak, J., Goodman, M., Koop, B. F., Tagle, D. A., Shoshani, J., Braunitzer, G., Kleinschmidt, T. K., de Jong, W. W., and Matsuda, G. 1990. Perspectives from amino acid and nucleotide sequences on cladistic relationships among higher taxa of Eutheria, in: H. H. Genoways (ed.), Current Mammalogy, Vol. 2, pp. 545–572. Plenum Press, New York.Google Scholar
  16. Easteal, S. 1990. The pattern of mammalian evolution and the relative rate of molecular evolution. Genetics 124:165–173.PubMedGoogle Scholar
  17. Fong, S.-L., Fong, W.-B., Morris, T. A., Kedzie, K. M., and Bridges, C. D. B. 1990. Characterization and comparative structural features of the gene for human interstitial retinol-binding protein.J Biol. Chem. 265:3648–3653.PubMedGoogle Scholar
  18. George, W. 1985. Reproductive and chromosomal characters of ctenodactylids as a key to their evolutionary relationships, in: W. P. Luckett and J.-L. Hartenberger (eds.), Evolutionary Relationships among Rodents: A Multidisciplinary Analysis, pp. 453–474. Plenum Press, New York.Google Scholar
  19. Gingerich, P. D. 1985. South American mammals in the Paleocene of North America, in: F. G. Stehli and S. D. Webb (eds.), The Great American Biotic Interchange, pp. 123–135. Plenum Press, New York.CrossRefGoogle Scholar
  20. Goodman, M., Koop, B. F., Czelusniak, J., Weiss, M. L., and Slightom, J. L. 1984. The ?-globin gene: Its long evolutionary history in the ß-globin gene family of mammals. J. Mol. Biol. 180:803–823.PubMedCrossRefGoogle Scholar
  21. Gregory, W. K. 1910. The orders of mammals. Bull. Am. Mus. Nat. Hist. 27:1–524.Google Scholar
  22. Gyllensten, U. B., and Erlich, H. A. 1988. Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc. Natl. Acad. Sci. USA 85:7652–7656.PubMedCrossRefGoogle Scholar
  23. Hardison, R. C. 1983. The nucleotide sequence of the rabbit embryonic globin gene ß4. J. Biol. Chem. 258:8739–8744.PubMedGoogle Scholar
  24. Harris, S., Thackeray, J. R., Jeffreys, A. J., and Weiss, M. L. 1986. Nucleotide sequence analysis of the lemur ß-globin gene family: Evidence for major rate fluctuations in globin polypeptide evolution. Mol. Biol. Evol. 3:465–484.PubMedGoogle Scholar
  25. Hill, W. C. O. 1955. Primates, Vol. 2. Wiley-Interscience, New York.Google Scholar
  26. Jukes, T. H., and Cantor, C. R. 1969. Evolution of protein molecules, in: H. N. Munro (ed.), Mammalian Protein Metabolism, Vol. 2, pp. 21–123. Academic Press, New York.Google Scholar
  27. Kay, R. F., Thorington, R. W., Jr., and Houde, P. 1990. Eocene plesiadapiform shows affinities with flying lemurs not primates. Nature 345:342–344.CrossRefGoogle Scholar
  28. Kluge, A. G. 1989. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Syst. Zool. 38:7–25.CrossRefGoogle Scholar
  29. Koop, B. F., and Goodman, M. 1988. Evolutionary and developmental aspects of two hemoglobin ß-chain genes (∈M and ßM) of opossum. Proc. Natl. Acad. Sci. USA 85:3893–3897.PubMedCrossRefGoogle Scholar
  30. Koop, B. F., Miyamoto, M. M., Embury, J. E., Goodman, M., Czelusniak, J., and Slightom, J. L. 1986. Nucleotide sequence and evolution of the orangutan e-globin gene region and surrounding Alu repeats.J Mol. Evol. 24:94–102.PubMedCrossRefGoogle Scholar
  31. Koop, B. F., Sieminiak, D., Slightom, J. L., Goodman, M., Dunbar, J., Wright, P. L., and Simons, E. L. 1989. Tarsius 8- and ß-globin genes: Conversion, evolution, and systematic implications. J. Biol. Chem. 264:68–79.PubMedGoogle Scholar
  32. Li, C.-K., and Ting, S.-Y. 1985. Possible phylogenetic relationships: Eurymylid-rodent and mimotonid—lagomorph, in: W. P. Luckett and J.-L. Hartenberger (eds.), Evolutionary Relationships among Rodents: A Multidisciplinary Analysis, pp. 35–58. Plenum Press, New York.Google Scholar
  33. Li, W.-H., Gouy, M., Sharp, P. M., O’Huigan, C., and Yeng, Y.-W. 1990. Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks. Proc. Natl. Acad. Sci. USA 87:6703–6707.PubMedCrossRefGoogle Scholar
  34. Linnaeus, C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, Tomus I, editio decima, reformata, pp. 18–47. Holmiae, Impensis Direct. Laurentii Salvii, Stockholm.Google Scholar
  35. Luckett, W. P. 1980. The use of reproductive and developmental features in assessing tupaiid affinities, in: W. P. Luckett (ed.), Comparative Biology and Evolutionary Relationships of Tree Shrews, pp. 245–266. Plenum Press, New York.CrossRefGoogle Scholar
  36. Luckett, W. P. 1985. Superordinal and intraordinal affinities of rodents: Developmental evidence from dentition and placentation, in: W. P. Luckett and J.-L. Hartenberger (eds.), Evolutionary Relationships among Rodents: A Multidisciplinary Analysis, pp. 227–276. Plenum Press, New York.Google Scholar
  37. Luckett, W. P., and Hartenberger, J.-L. (eds.) 1985. Evolutionary Relationships among Rodents: A Multidisciplinary Analysis. Plenum Press, New York.Google Scholar
  38. McKenna, M. C. 1975. Toward a phylogenetic classification of the Mammalia, in: W. P. Luckett and F. S. Szalay (eds.), Phylogeny of the Primates: A Multidisciplinary Approach, pp. 21–46. Plenum Press, New York.CrossRefGoogle Scholar
  39. Martin, R. D. 1990. Primate Origins and Evolution: A Phylogenetic Reconstruction. Chapman & Hall, London.Google Scholar
  40. Mayr, E. 1986. Uncertainty in science: Is the giant panda a bear or a raccoon? Nature 323:769–771.PubMedCrossRefGoogle Scholar
  41. Mindell, D. P., Dick, C. W., and Baker, R. J. 1991. Phylogenetic relationships among megabats, microbats, and primates. Proc. Natl. Acad. Sci. USA 88:10322–10326.PubMedCrossRefGoogle Scholar
  42. Miyamoto, M. M., and Cracraft, J. 1991. Phylogenetic inference, DNA sequence analysis, and the future of molecular systematics, in: M. M. Miyamoto and J. Cracraft (eds.), Phylogenetic Analysis of DNA Sequences, pp. 3–17. Oxford University Press, London.Google Scholar
  43. Miyamoto, M. M., and Goodman, M. 1986. Biomolecular systematics of eutherian mammals: Phylogenetic patterns and classification. Syst. Zool. 35:230–240.CrossRefGoogle Scholar
  44. Novacek, M. J. 1980. Cranioskeletal features in tupaiids and selected eutherians as phylogenetic evidence, in: W. P. Luckett (ed.), Comparative Biology and Evolutionary Relationships of Tree Shrews, pp. 35–93. Plenum Press, New York.CrossRefGoogle Scholar
  45. Novacek, M. J. 1985a. Cranial evidence for rodent affinities, in: W. P. Luckett and J.-L. Hartenberger (eds.), Evolutionary Relationships among Rodents, pp. 59–81. Plenum Press, New York.Google Scholar
  46. Novacek, M. J. 1985b. Evidence for echolocation in the oldest known bat. Nature 315:140–141.PubMedCrossRefGoogle Scholar
  47. Novacek, M. J. 1986. The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. Bull. Am. Mus. Nat. Hist. 183:1–111.Google Scholar
  48. Novacek, M. J. 1990. Morphology, paleontology, and the higher clades of mammals, in: H. H. Genoways (ed.), Current Mammalogy, Vol. 2, pp. 507–543. Plenum Press, New York.Google Scholar
  49. Novacek, M. J., and Wyss, A. R. 1986. Higher-level relationships of the recent eutherian orders: Morphological evidence. Cladistics 2:257–287.CrossRefGoogle Scholar
  50. O’Brien, S. J., Nash, W. G., Wildt, D. E., Bush, M. E., and Benveniste, R. E. 1985. A molecular solution to the riddle of the giant panda’s phylogeny. Nature 317:140–144.PubMedCrossRefGoogle Scholar
  51. Penny, D., Foulds, L. R., and Hendy, M. D. 1982. Testing the theory of evolution by comparing phylogenetic trees constructed from five different protein sequences. Nature 297:197–200.PubMedCrossRefGoogle Scholar
  52. Penny, D., Hendy, M. D., and Steel, M. A. 1991. Testing the theory of descent, in: M. M. Miyamoto and J. Cracraft (eds.), Phylogenetic Analysis of DNA Sequences, pp. 155–183. Oxford University Press, London.Google Scholar
  53. Pettigrew, J. D. 1986. Flying primates? Megabats have the advanced pathway from eye to midbrain. Science 231:1304–1306.PubMedCrossRefGoogle Scholar
  54. Pettigrew, J. D. 1991a. Wings or brain? Convergent evolution in the origins of bats. Syst. Zool. 40:199–216.CrossRefGoogle Scholar
  55. Pettigrew, J. D. 1991b. A fruitful, wrong hypothesis? Response to Baker, Novacek, and Simmons. Syst. Zool. 40:231–239.CrossRefGoogle Scholar
  56. Pettigrew, J. D., Jamieson, B. G. M., Robson, S. K., Hall, L. S., McAnally, K. L, and Cooper, H. M. 1989. Phylogenetic relations between microbats, megabats and primates (Mammalia: Chirop-tera and Primates). Philos. Trans. R. Soc. London Ser. B 325:489–559.CrossRefGoogle Scholar
  57. Prager, E. M., and Wilson, A. C. 1988. Ancient origin of lactalbumin from lysozyme: Analysis of DNA and amino acid sequences.J Mol. Evol. 27:326–335.PubMedCrossRefGoogle Scholar
  58. Saiki, R. K., Gelfand, D. H., Stoeffel, S., Scharf, S. J., Jiguchi, R., Horn, G. T., Mullis, K. B., and Erlich, H. A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491.PubMedCrossRefGoogle Scholar
  59. Saitou, N., and Nei, M. 1987. The neighbour-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425.PubMedGoogle Scholar
  60. Sarich, V. M. 1973. The giant panda is a bear. Nature 245:218–220.CrossRefGoogle Scholar
  61. Savage, D. E., and Russell, D. E. 1983. Mammalian Paleofaunas of the World. Addison-Wesley, Reading.Google Scholar
  62. Shapiro, S. G., Schon, E. A., Townes, T. M., and Lingrell, J. B. 1983. Sequence and linkage of the goat ∈1 and ∈11 ß-globin genes. J. Mol. Biol. 169:31–52.PubMedCrossRefGoogle Scholar
  63. Simmons, N. B., Novacek, M. J., and Baker, R.J. 1991. Approaches, methods, and the future of the chiropteran monophyly controversy: A reply to J. D. Pettigrew. Syst. Zool. 40:239–243.CrossRefGoogle Scholar
  64. Simpson, G. G. 1945. The principles of classification and a classification of mammals. Bull. Am. Mus. Nat. Hist. 85:1–350.Google Scholar
  65. Simpson, G. G. 1978. Early mammals in South America: Fact, controversy and mystery. Proc. Am. Philos. Soc. 122:318–328.Google Scholar
  66. Smith, F., and Waterman, M. S. 1981. Identification of common molecular subsequences. J. Mol. Biol. 147:195–197.PubMedCrossRefGoogle Scholar
  67. Sneath, P. H. A. and Sokal, R. R. 1973. Numerical Taxonomy. Freeman, San Francisco.Google Scholar
  68. Stanhope, M. J., Czelusniak, J., Si, J.-S., Nickerson, J., and Goodman, M. 1992. A molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid binding protein, with convincing evidence for bat monophyly. Mol. Phyl. Evol. 1:148–160.CrossRefGoogle Scholar
  69. Swofford, D. L., and Olsen, G.J. 1990. Phylogeny reconstruction, in: D. M. Hillis and C. Moritz (eds.), Molecular Systematics, pp. 411–515. Sinauer Assoc, Sunderland.Google Scholar
  70. Szalay, F. S. 1977. Phylogenetic relationships and a classification of the eutherian Mammalia, in: M. K. Hecht, P. C. Goody, and B. M. Hecht (eds.), Major Patterns in Vertebrate Evolution, pp. 315–374. Plenum Press, New York.CrossRefGoogle Scholar
  71. Tagle, D. A., Koop, B. F., Goodman, M., Slightom, J. L., Hess, D. L., and Jones, R. T. 1988. Embryonic e- and 7-globin genes of a prosimian primate (Galago crassicaudatus): Nucleotide and amino acid sequences, developmental regulation, and phylogenetic footprints. J. Mol. Biol. 203:439–455.PubMedCrossRefGoogle Scholar
  72. Templeton, A. R. 1992. Human origins and analysis of mitochondrial DNA sequences. Science 255:737.PubMedCrossRefGoogle Scholar
  73. Vigilant, L., Stoneking, M., Harpending, H., Hawkes, K., and Wilson, A. C. 1991. African populations and the evolution of human mitochondrial DNA. Science 253:1503–1507.PubMedCrossRefGoogle Scholar
  74. Wible, J. R., and Covert, H. H. 1987. Primates: Cladistic diagnosis and relationships. J. Hum. Evol. 16:1–22.CrossRefGoogle Scholar
  75. Williams, S. A., and Goodman, M. 1989. A statistical test that supports a human/chimpanzee clade based on noncoding DNA sequence data. Mol. Biol. Evol. 6:325–330.PubMedGoogle Scholar
  76. Wood, A. E. 1985. The relationships, origin and dispersal of the hystricognathous rodents, in: W. P. Luckett and J.-L. Hartenberger (eds.), Evolutionary Relationships among Rodents: A Multi-disciplinary Analysis, pp. 475–513. Plenum Press, New York.Google Scholar
  77. Wu, C.-L, and Li, W-H. 1985. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc. Natl. Acad. Sci. USA 82:1741–1745.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Michael J. Stanhope
    • 1
  • Wendy J. Bailey
    • 1
  • John Czelusniak
    • 1
  • Morris Goodman
    • 1
  • Jing-Sheng Si
    • 2
  • John Nickerson
    • 2
  • John G. Sgouros
    • 3
  • Gamal A. M. Singer
    • 3
  • Traute K. Kleinschmidt
    • 3
  1. 1.Department of Anatomy and Cell BiologyWayne State University School of MedicineDetroitUSA
  2. 2.Department of OphthalmologyEmory UniversityAtlantaUSA
  3. 3.Max Planck Institute for BiochemistryMunichGermany

Personalised recommendations