Advertisement

Abstract

This paper discusses the physics of ac losses in type-II superconductors and in multifilamentary superconducting-normal composite conductors. As an introduction, the ac eddy-current losses in a homogeneous normal conducting cylindrical specimen subjected to an alternating applied magnetic field are briefly reviewed. The ac losses in a superconducting cylindrical specimen are discussed in detail next, with emphasis on the losses in a specimen subjected to an alternating applied longitudinal magnetic field. In general, dissipation occurs via both flux-flow losses, which are analogous to eddy-current losses in the normal state, and hysteretic losses, which arise from bulk and surface pinning as well as annihilation of vortices of the opposite sense. Tests are suggested by which the dominant loss mechanisms can be identified. Special considerations are noted for the case of the high-temperature superconductors. Finally, the losses in multifilamentary superconducting-normal composite conductors are discussed.

Keywords

Hysteresis Loop Magnetic Flux Critical Current Density Surface Barrier Composite Wire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. Jackson, “Classical Electrodynamics,” Wiley, New York, (1962), p. 197.Google Scholar
  2. 2.
    R W. Rollins and J. Silcox, Phys. Rev. 155:404 (1967).ADSCrossRefGoogle Scholar
  3. 3.
    J. D. Jackson, “Classical Electrodynamics,” Wiley, New York (1962), p. 238.Google Scholar
  4. 4.
    R G. Chambers and J. G. Park, Brit. J. Appl. Phys. 12:507 (1961).ADSCrossRefGoogle Scholar
  5. 5.
    J. R. Clem, H. R. Kerchner, and S. T. Sekula, Phys. Rev. B 14:1893 (1976).ADSCrossRefGoogle Scholar
  6. 6.
    Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. A. Stegun, U.S. Natl. Bur. Stand. Appl. Math. Series No. 55 (U.S. GPO, Washington. D.C., (1967), p. 382.Google Scholar
  7. 7.
    See, for example, Y. B. Kim and M. J. Stephen, in Superconductivity, Ed. by R D. Parks, Marcel Dekker, New York (1969), Vol. 2, Chap. 19, pp. 1107–1165.Google Scholar
  8. 8.
    See, for example, A. L. Fetter and P. C. Hohenberg, in Superconductivity, Ed. by R. D. Parks, Marcel Dekker, New York (1969), Vol. 2, Chap. 14, pp. 817–923.Google Scholar
  9. 9.
    D. Dew-Hughes, Cryogenics 28:674 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    P. H. Kes, J. Aarts, J. van den Berg, C. J. van der Beek, and J. A. Mydosh, Supercond. Sci. Technol. 1:242 (1989).ADSCrossRefGoogle Scholar
  11. 11.
    D. G. Walmsley, J. Phys. F 2:510 (1972).ADSCrossRefGoogle Scholar
  12. 12.
    A M. Campbell and J. E. Evetts, Adv. Phys. 21:199 (1972).ADSCrossRefGoogle Scholar
  13. 13.
    J. R. Clem, J. Low Temp. Phys. 38:353 (1980).ADSCrossRefGoogle Scholar
  14. 14.
    T. Ezaki, K. Yamafuji, and F. Irie, J. Phys. Soc. Japan 40:1271 (1976).ADSCrossRefGoogle Scholar
  15. 15.
    J. R. Clem, Phys. Rev. B 26:2463 (1982).ADSCrossRefGoogle Scholar
  16. 16.
    A. Perez-Gonzalez and J. R. Clem, Phys. Rev. B 32:2909 (1985).ADSCrossRefGoogle Scholar
  17. 17.
    J. F. Clem, in Low Temperature Physics-LT13, Ed. by K. D. Timmerhaus, W. J. O’Sullivan, and E. F. Hammel, Plenum, New York (1974), Vol. 3, p. 102.Google Scholar
  18. 18.
    J. R. Clem, J. Appl. Phys. 50:3518 (1979).ADSCrossRefGoogle Scholar
  19. 19.
    C. A. M. van der Klein, J. D. Elen, R. Wolf, and D. de Klerk, Physica 49:98 (1970).ADSCrossRefGoogle Scholar
  20. 20.
    C. A. M. van der Klein, Ph.D. Thesis, Leiden, 1974.Google Scholar
  21. 21.
    J. R. Clem, Physica C 153–155:50 (1988).CrossRefGoogle Scholar
  22. 22.
    J. R. Clem, “AC Losses in the New High-Temperature Superconductors,” Report No. EPRI EL-6277, March 1989, Electric Power Research Institute, 3412 Hillview Avenue, Palo Alto, CA 94304.Google Scholar
  23. 23.
    B. Renker, I. Apfelstedt, H. Küpfer, C. Politis, H. Rietschel, W. Schauer, H. Wühl, U. Gottwick, H. Kneissel, U. Rauchschwalbe, H. Spille, and F. Steglich, Z. Phys. B 67:1 (1987).ADSCrossRefGoogle Scholar
  24. 24.
    K.-H. Müller, B. W. Ricketts, J. C. Macfarlane, and R. Driver, Physica C 162:1177 (1989).ADSCrossRefGoogle Scholar
  25. 25.
    K.-H. Müller, Physica C 168:585 (1989).CrossRefGoogle Scholar
  26. 26.
    K.-H. Müller, IEEE Trans. Magn. 27:2174 (1991).CrossRefGoogle Scholar
  27. 27.
    W. J. Carr, Jr., J. Appl. Phys. 45:929 (1974).ADSCrossRefGoogle Scholar
  28. 28.
    W. J. Carr, Jr., J. Appl. Phys. 45:935 (1974).ADSCrossRefGoogle Scholar
  29. 29.
    W. J. Carr, Jr., J. Appl. Phys. 46:4043 (1975).ADSCrossRefGoogle Scholar
  30. 30.
    W. J. Carr, Jr., in Proc. Sixth Symposium on Engineering Problems and Fusion Research, (1975), p. 152.Google Scholar
  31. 31.
    W. J. Carr, Jr., Phys. Rev. B 11:1547 (1975).MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    W. J. Carr, Jr., IEEE Transactions on Magnetics MAG-13, 192 (1977).Google Scholar
  33. 33.
    W. J. Carr, Jr., M. S. Walker, and J. H. Murphy, J. Appl. Phys. 46:4048 (1975).ADSCrossRefGoogle Scholar
  34. 34.
    R. Hancox, Proc. IEE 113:1221 (1966).Google Scholar
  35. 35.
    K. P. Jüngst and G. Ries, IEEE Transactions on Magnetics MAG-13, 527 (1977).Google Scholar
  36. 36.
    K. Kwasnitza. Cryogenics 17:613 (1977).CrossRefGoogle Scholar
  37. 37.
    K. Kwasnitza, Cryogenics 17:616 (1977).CrossRefGoogle Scholar
  38. 38.
    K. Kwasnitza and I. Horvath, Cryogenics 14:71 (1974).CrossRefGoogle Scholar
  39. 39.
    J. R. Miller and S. S. Shen, IEEE Transactions on Magnetics MAG-13, 534 (1977).Google Scholar
  40. 40.
    G. H. Morgan, J. Appl. Phys. 41:3673 (1970).ADSCrossRefGoogle Scholar
  41. 41.
    J. H. Murphy, IEEE Transactions on Magnetics MAG-13, 525 (1977).Google Scholar
  42. 42.
    G. Ries, IEEE Transactions on Magnetics MAG-13, 524 (1977).Google Scholar
  43. 43.
    J. P. Soubeyrand and B. Turck, IEEE Transactions on Magnetics MAG-15, 248 (1979).Google Scholar
  44. 44.
    B. Turck, Rev. Phys. Appl. 11:369 (1976).CrossRefGoogle Scholar
  45. 45.
    B. Turck, IEEE Transactions on Magnetics MAG-13, 548 (1977).Google Scholar
  46. 46.
    M. S. Walker, J. H. Murphy, and W. J. Carr, Jr., IEEE Transactions on Magnetics MAG-11, 309 (1975).Google Scholar
  47. 47.
    M. N. Wilson, in 1972 Applied Superconductivity Conference (IEEE, New York, 1972), p. 385.Google Scholar
  48. 48.
    M. N. Wilson, C. R. Walters, J. D. Lewin, and P. F. Smith, J. Phys. D 3:1517 (1970).CrossRefGoogle Scholar
  49. 49.
    J. J. Wollan, IEEE Transactions on Magnetics MAG-13, 544 (1977).Google Scholar
  50. 50.
    K. Kwasnitza, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • John R. Clem
    • 1
  1. 1.Ames Laboratory-USDOE and Department of Physics and AstronomyIowa State UniversityAmesUSA

Personalised recommendations