Alternating-Field Susceptometry and Magnetic Susceptibility of Superconductors

  • R. B. Goldfarb
  • M. Lelental
  • C. A. Thompson


This review critically analyzes current practice in the design, calibration, sensitivity determination, and operation of alternating-field susceptometers, and examines applications in magnetic susceptibility measurements of superconductors. Critical parameters of the intrinsic and coupling components of granular superconductors may be deduced from magnetic susceptibility measurements. The onset of intrinsic diamagnetism corresponds to the initial decrease in electrical resistivity upon cooling, but the onset of intergranular coupling coincides with the temperature for zero resistivity. The lower critical field may be determined by the field at which the imaginary part of susceptibility increases from zero. Unusual features in the susceptibility of superconductor films, such as a magnetic moment that is independent of film thickness and the variation of susceptibility with angle, are related to demagnetization. Demagnetizing factors of superconductor cylinders are significantly different from those commonly tabulated for materials with small susceptibilities. Rules for the susceptibility of mixtures with specific demagnetizing factors are used to estimate the volume fraction of superconducting grains in sintered materials. Common misunderstandings of the Meissner effect, magnetic units, and formula conversions are discussed. There is a comprehensive summary of critical-state formulas for slabs and cylinders, including new equations for complex susceptibility in large alternating fields. Limitations on the use of the critical-state model for deducing critical current density are listed and the meaning of the imaginary part of susceptibility is considered.


Critical Current Density Meissner Effect Coupling Component Secondary Coil Superconductor Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Thomson, “Reprint of Papers on Electrostatics and Magnetism,” Macmillan and Co., London (1872), p. 472.Google Scholar
  2. 2.
    In his original paper, Phil. Mag., ser. 4, 1:177 (1851), Thomson used the term “inductive capacity” for susceptibility, which seems to associate susceptibility with the magnetic induction B. He abandoned this term by 1872, possibly on the suggestion of Maxwell. Maxwell used the term “magnetic inductive capacity” for permeability in “A Treatise on Electricity and Magnetism,” first published in 1873.Google Scholar
  3. 3.
    W. Meissner and R. Ochsenfeld, Naturwissenschaften 21:787 (1933).ADSCrossRefGoogle Scholar
  4. 4.
    R. A. Hein, Phys. Rev. B 33:7539 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    D. Shoenberg, “Superconductivity,” Cambridge University Press, Cambridge, U.K. (1962), pp. 43–47.Google Scholar
  6. 6.
    F. G. A. Tarr and J. O. Wilhelm, Can. J. Res. 12:265 (1935).CrossRefGoogle Scholar
  7. 7.
    D. Shoenberg, Proc. Cambridge Phil. Soc. 33:260 (1937).ADSCrossRefGoogle Scholar
  8. 8.
    P. B. Alers, J. W. McWhirter, and C. F. Squire, in: “Low-Temperature Physics,” Nat. Bur. Stand. (U.S.), Circular 519 (1952), pp. 85–88.Google Scholar
  9. 9.
    M. B. Elzinga and C. Uher, Phys. Rev. B 32:88 (1985).ADSCrossRefGoogle Scholar
  10. 10.
    R. A. Hein and R. L. Falge, Jr., Phys. Rev. 123:407 (1961).ADSCrossRefGoogle Scholar
  11. 11.
    L. Krusin-Elbaum, A. P. Malozemoff, and Y. Yeshurun, in: “High-Temperature Superconductors,” M. B. Brodsky, R. C. Dynes, K. Kitazawa, and H. L. Tuller, eds., Materials Research Society, Pittsburgh, Symp. Proc. 99:221 (1988).Google Scholar
  12. 12.
    L. Krusin-Elbaum, A. P. Malozemoff, Y. Yeshurun, D. C. Cronemeyer, and F. Holtzberg, Physica C 153–155:1469 (1988).Google Scholar
  13. 13.
    V. I. Aleksandrov, M. A. Borik, V. G. Veselago, V. V. Voronov, Yu. K. Voron’ko, P. A. Ivanov, G. V. Maksimova, V. E. Makhotkin, V. A. Myzina, V. V. Osiko, A. M. Prokhorov, V. M. Tatarintsev, V. T. Udovenchik, V. A. Fradkov, and M. A. Chexmkov, JETP Lett. (Suppl.) 46:S77 (1987) [Pis’ma Zh. Eksp. Teor. Fiz. (Prilozh.) 46:90 (1987)].ADSGoogle Scholar
  14. 14.
    V. V. Alexandrov, V. V. Borisovskii, T. A. Fedotova, L. M. Fisher, N. V. Il’in, O. K. Smirnova, I. F. Voloshin, M. A. Baranov, and V. S. Gorbachev, Physica C 173:458 (1991).ADSCrossRefGoogle Scholar
  15. 15.
    S. Ruppel, G. Michels, H. Geus, J. Kaienborn, W. Schlabitz, B. Roden, and D. Wohlleben, Physica C 174:233 (1991).ADSCrossRefGoogle Scholar
  16. 16.
    M. Tinkham, “Introduction to Superconductivity,” Krieger Publishing, Malabar, Florida (1980), pp. 244–250.Google Scholar
  17. 17.
    R. B. Goldfarb, A. F. Clark, A. I. Braginski, and A. J. Panson, Cryogenics 27:475 (1987).CrossRefGoogle Scholar
  18. 18.
    D.-X. Chen, R. B. Goldfarb, J. Nogués, and K. V. Rao, J. Appl. Phys. 63:980 (1988).ADSCrossRefGoogle Scholar
  19. 19.
    D.-X. Chen, J. Nogués, N. Karpe, and K. V. Rao, Kexue Tongbao (Beijing, English edition) 33:560 (1988).Google Scholar
  20. 20.
    H. Mazaki, M. Takano, R. Kanno, and Y. Takeda, Jpn. J. Appl. Phys. 26:L780 (1987).Google Scholar
  21. 21.
    T. Ishida and H. Mazaki, Jpn. J. Appl. Phys. 26:L1296 (1987).ADSCrossRefGoogle Scholar
  22. 22.
    H. Mazaki, M. Takano, Y. Ikeda, Y. Bando, R. Kanno, Y. Takeda, and O. Yamamoto, Jpn. J. Appl. Phys. 26:L1749 (1987).ADSCrossRefGoogle Scholar
  23. 23.
    J. Garcia, C. Rillo, F. Lera, J. Bartolomé, R. Navarro, D. H. A. Blank, and J. Flokstra, J. Magn. Magn. Mater. 69:L225 (1987).ADSCrossRefGoogle Scholar
  24. 24.
    R. Renker, I. Apfelstedt, H. Küpfer, C. Politis, H. Rietschel, W. Schauer, H. Wühl, U. Gottwick, H. Kneissel, U. Rauchschwalbe, H. Spille, and F. Steglich, Z Phys. B 67:1 (1987).ADSCrossRefGoogle Scholar
  25. 25.
    H. Küpfer, I. Apfelstedt, W. Schauer, R. Flükiger, R. Meier-Hirmer, and H. Wühl, Z. Phys. B 69:159 (1987).ADSCrossRefGoogle Scholar
  26. 26.
    J. R. Cave, A. Février, Hoang Gia Ky, and Y. Laumond, IEEE Trans. Magn. 23:1732 (1987).ADSCrossRefGoogle Scholar
  27. 27.
    G M. Bastuscheck, R. A. Buhrman and J. C. Scott, Phys. Rev. B 24:6707 (1981).ADSCrossRefGoogle Scholar
  28. 28.
    G Ebner and D. Stroud, Phys. Rev. B 31:165 (1985).ADSCrossRefGoogle Scholar
  29. 29.
    P. England, F. Goldie, and A. D. Caplin, J. Phys. F: Met. Phys. 17:447 (1987).ADSCrossRefGoogle Scholar
  30. 30.
    Y. M. Chiang, J. A. S. Ikeda, and A. Roshko, in: “Ceramic Superconductors II,” M. F. Yan, ed., American Ceramics Society, Westerville, Ohio (1988), p. 607.Google Scholar
  31. 31.
    S. E. Babcock, T. F. Kelly, P. J. Lee, J. M. Seuntjens, L. A. Lavanier, and D. C. Larbalestier, Physica C 152:25 (1988).ADSCrossRefGoogle Scholar
  32. 32.
    P. Dubots and J. Cave, Cryogenics 28:661 (1988).CrossRefGoogle Scholar
  33. 33.
    D. K. Finnemore, R. N. Shelton, J. R. Clem, R. W. McCallum, H. C. Ku, R. E. McCarley, S. C. Chen, P. Klavins, and V. Kogan, Phys. Rev. B 35:5319 (1987).ADSCrossRefGoogle Scholar
  34. 34.
    J. W. Ekin, A. I. Braginski, A. J. Panson, M. A. Janocko, D. W. Capone II, N. J. Zaluzec, B. Flandermeyer, O. F. de Lima, M. Hong, J. Kwo, and S. H. Liou, J. Appl. Phys. 62:4821 (1987).ADSCrossRefGoogle Scholar
  35. 35.
    M. Suenaga, A. Ghosh, T. Asano, R. L. Sabatini, and A. R. Moodenbaugh, in: “High Temperature Superconductors,” D. U. Gubser and M. Schluter, eds., Materials Research Society, Pittsburgh, EA-11:247 (1987).Google Scholar
  36. 36.
    D. C. Larbalestier, M. Daeumling, X. Cai, J. Seuntjens, J. McKinnell, D. Hampshire, P. Lee, C. Meingast, T. Willis, H. Muller, R. D. Ray, R. G. Dillenburg, E. E. Hellstrom, and R. Joynt, J. Appl. Phys. 62, 3308 (1987).ADSCrossRefGoogle Scholar
  37. 37.
    T. Ishida and H. Mazaki, J. Appl. Phys. 52:6798 (1981).ADSCrossRefGoogle Scholar
  38. 38.
    T. Ishida, K. Kanoda, H. Mazaki, and I. Nakada, Phys. Rev. B 29:1183 (1984).ADSCrossRefGoogle Scholar
  39. 39.
    H. Mazaki and T. Ishida, Jpn. J. Appl Phys. 26:L1508 (1987).ADSCrossRefGoogle Scholar
  40. 40.
    Y. Oda, I. Nakada, T. Kohara, H. Fujita, T. Kaneko, H. Toyoda, E. Sakagami, and K. Asayama, Jpn. J. Appl. Phys. 26:L481 (1987).ADSCrossRefGoogle Scholar
  41. 41.
    E. Babic, Z. Marohnic, D. Drobac, M. Prester, and N. Brničevic, Physica C 153-155: 1511 (1988).ADSCrossRefGoogle Scholar
  42. 42.
    H. M. Ledbetter, S. A. Kim, R. B. Goldfarb, and K. Togano, Phys. Rev. B 39:9689 (1989).ADSCrossRefGoogle Scholar
  43. 43.
    The material described in Fig. 2 was used in an interlaboratory comparison sponsored by the Defense Advanced Research Projects Agency (DARPA) in 1989. Participants were asked to determine T c by susceptibility and report “the midpoint of the full inductive transition,” presumably referring to the coupling transition. No guidance was given as to measuring field. The 16 participants reported Tc’s ranging from 83 to 94 K. Most of the systematic differences in the measurements were likely due to different measuring fields used by the participants.Google Scholar
  44. 44.
    X. Obradors, C. Rillo, M. Vallet, A. Labarta, J. Fontcuberta, J. Gonzalez-Calbet, and F. Lera, Physica C 153-155:389 (1988).ADSCrossRefGoogle Scholar
  45. 45.
    H. Morita, K. Watanabe, Y. Murakami, S. Kondo, Y. Obi, K. Noto, H. Fujimori, and Y. Muto, Physica B 148:449 (1987).CrossRefGoogle Scholar
  46. 46.
    H. Nobumasa, K. Shimizu, Y. Kitano, and T. Kawai, Jpn. J. Appl. Phys. 27:L846 (1988).ADSCrossRefGoogle Scholar
  47. 47.
    C. E. Gough, J. Physique Colloq. 49:C8–2075 (1988).Google Scholar
  48. 48.
    A. K. Sarkar, B. Kumar, I. Maartense, and T. L. Peterson, J. Appl. Phys. 65:2392 (1989).ADSCrossRefGoogle Scholar
  49. 49.
    A. Mehdaoui, B. Loegel, and D. Bolmont, J. Appl. Phys. 66:1497 (1989).ADSCrossRefGoogle Scholar
  50. 50.
    E. C. Stoner, Phil Mag., ser. 7, 36:803 (1945).Google Scholar
  51. 51.
    J. A. Osborn, Phys. Rev. 67:351 (1945).ADSCrossRefGoogle Scholar
  52. 52.
    D.-X. Chen, J. A. Brug, and R. B. Goldfarb, IEEE Trans. Magn. 27:3601 (1991).ADSCrossRefGoogle Scholar
  53. 53.
    T. T. Taylor, J. Res. Nat. Bur. Stand. (U.S.) 64B:199 (1960).CrossRefGoogle Scholar
  54. 54.
    D.-X. Chen, “Physical Basis of Magnetic Measurements,” China Mechanical Industry, Beijing (1985), pp. 139–140.Google Scholar
  55. 55.
    S. D. Murphy, K. Renouard, R. Crittenden, and S. M. Bhagat, Solid State Commun. 69:367 (1989).ADSCrossRefGoogle Scholar
  56. 56.
    J. Ferreirinho, S. J. Lee, S. J. Campbell, and A. Calka, J. Magn. Magn. Mater. 88:281 (1990).ADSCrossRefGoogle Scholar
  57. 57.
    J. Clerk Maxwell, “A Treatise on Electricity and Magnetism,” 3rd Ed., Vol. 2, Clarendon Press, Oxford (1892), pp. 57–58 and pp. 476-477. Reprinted, Dover Publications, New York (1954).Google Scholar
  58. 58.
    A. M. Campbell, F. J. Blunt, J. D. Johnson, and P. A. Freeman, Cryogenics 31:732 (1991).CrossRefGoogle Scholar
  59. 59.
    R. Navarro and L. J. Campbell, unpublished, 1991.Google Scholar
  60. 60.
    T. C. Choy and A. M. Stoneham, J. Phys.: Condens. Matter 2:939 (1990).ADSCrossRefGoogle Scholar
  61. 61.
    J. R. Clem and V. G. Kogan, Jpn. J. Appl. Phys. Suppl. 26-3:1161 (1987).Google Scholar
  62. 62.
    T. Ishida and H. Mazaki, Jpn. J. Appl. Phys. 26:L2003 (1987).ADSCrossRefGoogle Scholar
  63. 63.
    G. Aeppli, R. J. Cava, E. J. Ansaldo, J. H. Brewer, S. R. Kreitzman, G. M. Luke, D. R. Noakes, and R. F. Kiefl, Phys. Rev. B 35:7129 (1987).ADSCrossRefGoogle Scholar
  64. 64.
    Y. J. Uemura, V. J. Emery, A. R. Moodenbaugh, M. Suenaga, D. C. Johnston, A. J. Jacobson, J. T. Lewandowski, J. H. Brewer, R. F. Kiefl, S. R. Kreitzman, G. M. Luke, T. Riseman, C. E. Stronach, W. J. Kossler, J. R. Kempton, X. H. Yu, D. Opie, and H. Schone, Phys. Rev. B 38:909 (1988).ADSCrossRefGoogle Scholar
  65. 65.
    J. R. Cooper, C. T. Chu, L. W. Zhou, B. Dunn, and G. Grüner, Phys. Rev. B 37:638 (1988).ADSCrossRefGoogle Scholar
  66. 66.
    R. J. Cava, B. Batlogg, R. B. van Dover, D. W. Murphy, S. Sunshine, T. Siegrist, J. P. Remeika, E. A. Rietman, S. Zahurak, and G. P. Espinosa, Phys. Rev. Lett. 58:1698 (1987).CrossRefGoogle Scholar
  67. 67.
    P. M. Grant, R. B. Beyers, E. M. Engler, G. Lim, S. S. P. Parkin, M. L. Ramirez, V. Y. Lee, A. Nazzal, J. E. Vasquez, and R. J. Savoy, Phys. Rev. B 35:7242 (1987).ADSCrossRefGoogle Scholar
  68. 68.
    A. J. Panson, A. I. Braginski, J. R. Gavaler, J. K. Hulm, M. A. Janoko, H. C. Pohl, A. M. Stewart, J. Talvacchio, and G. R. Wagner, Phys. Rev. B 35:8874 (1987).CrossRefGoogle Scholar
  69. 69.
    A. C. Rose-Innes and E. H. Rhoderick, “Introduction to Superconductivity,” 2nd Ed., Pergamon Press, Oxford, U.K. (1978), p. 93–97.Google Scholar
  70. 70.
    A. L. Schawlow and G. E. Devlin, Phys. Rev. 113:120 (1959).ADSCrossRefGoogle Scholar
  71. 71.
    D.-X. Chen, Y. Mei, and H. L. Luo, Physica C 167:317 (1990).ADSCrossRefGoogle Scholar
  72. 72.
    D.-X. Chen, A. Sanchez, T. Puig, L. M. Martinez, and J. S. Munoz, Physica C 168:652 (1990).ADSCrossRefGoogle Scholar
  73. 73.
    Ref. 57, p. 70. Maxwell probably meant to refer to Art. 429 in this quotation.Google Scholar
  74. 74.
    R. B. Goldfarb, Cryogenics 26:621 (1986).CrossRefGoogle Scholar
  75. 75.
    J. A. Cape and J. M. Zimmerman, Phys. Rev. 153:416 (1967).ADSCrossRefGoogle Scholar
  76. 76.
    L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, “Electrodynamics of Continuous Media,” 2nd Ed., Pergamon Press, Oxford, U.K. (1984), p. 185.Google Scholar
  77. 77.
    V. F. Elesin, I. V. Zakharchenko, A. A. Ivanov, A. P. Menushenkov, A. A. Sinchenko, and S. V. Shavkin, Supercond., Phys. Chem. Technol. 3:1376 (1990) [Sverkhprovodn., Fiz. Khim. Tekh. 3: 1704 (1990)].Google Scholar
  78. 78.
    P. G. de Gennes, “Superconductivity of Metals and Alloys,” Addison-Wesley, Redwood City, California (1989), pp. 60–63.Google Scholar
  79. 79.
    E. M. Gyorgy, AT&T Bell Laboratories, personal communication, 1990.Google Scholar
  80. 80.
    H. Teshima, A. Oishi, H. Izumi, K. Ohata, T. Morishita, and S. Tanaka, Appl. Phys. Lett. 58:2833 (1991).ADSCrossRefGoogle Scholar
  81. 81.
    J. A. Agostinelli, G. R. Paz-Pujalt, and A. K. Mehrotra, Physica C 156:1208 (1988).CrossRefGoogle Scholar
  82. 82.
    M. Lelental, S. Chen, S.-Tong Lee, G. Braunstein, and T. Blanton, Physica C 167:614 (1990).ADSCrossRefGoogle Scholar
  83. 83.
    D. Majumdar and M. Lelental, Physica C 161:145 (1989).ADSCrossRefGoogle Scholar
  84. 84.
    T. Blanton, M. Lelental, C. L. Barnes, Physica C 173:152 (1991).ADSCrossRefGoogle Scholar
  85. 85.
    R. B. Goldfarb, Magnetic units and material specification, in: “Concise Encyclopedia of Magnetic and Superconducting Materials,” J. E. Evetts, ed., Pergamon Press, Oxford, U.K. (1992).Google Scholar
  86. 86.
    C. P. Bean, Rev. Mod. Phys. 36:31 (1964).ADSCrossRefGoogle Scholar
  87. 87.
    H. London, Phys. Lett. 6:162 (1963).ADSCrossRefGoogle Scholar
  88. 88.
    Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev. 129:528 (1963).ADSCrossRefGoogle Scholar
  89. 89.
    T. Ishida and R. B. Goldfarb, Phys. Rev. B 41:8939 (1990).ADSGoogle Scholar
  90. 90.
    D.-X. Chen and R. B. Goldfarb, J. Appl. Phys. 66:2489 (1989).ADSCrossRefGoogle Scholar
  91. 91.
    Ref. 76, pp. 204-205.Google Scholar
  92. 92.
    J. R. Clem, “AC Losses in Type-II Superconductors,” Ames Lab. Tech. Rep. IS-M 280, Iowa State University, Ames, Iowa (1979), Eqs. (25). Reprinted with additions in: “Magnetic Susceptibility of Superconductors and Other Spin Systems,” R. A. Hein, T. L. Francavilla, and D. H. Liebenberg, eds., Springer Science+Business Media New York (1992).Google Scholar
  93. 93.
    C. P. Bean, Rev. Mod. Phys. 36:31 (1964).ADSCrossRefGoogle Scholar
  94. 94.
    These slab equations for χ′ and χ″ may be obtained by simplification of Eqs. (9) in: L. Ji, R. H. Sohn, G. C. Spalding, C. J. Lobb, and M. Tinkham, Phys. Rev. B 40:10936 (1989).Google Scholar
  95. 95.
    C. P. Bean, Phys. Rev. Lett. 8:250 (1962).ADSzbMATHCrossRefGoogle Scholar
  96. 96.
    W. A. Fietz and W. W. Webb, Phys. Rev. 178:657 (1969).ADSCrossRefGoogle Scholar
  97. 97.
    These axial cylinder equations for χ′ and χ″ may be obtained by simplification of Eqs. (118)-(124) in Ref. 92. Note that 2 sin−1(x −1/2) = cos−l-2/X).Google Scholar
  98. 98.
    R. B. Goldfarb and A. F. Clark, IEEE Trans. Magn. 21:332 (1985).ADSCrossRefGoogle Scholar
  99. 99.
    W. J. Carr, Jr., M. S. Walker, and J. H. Murphy, J. Appl. Phys. 46:4048 (1975).ADSCrossRefGoogle Scholar
  100. 100.
    W. J. Carr, Jr., J. H. Murphy, and G. R. Wagner, Adv. Cryo. Eng. 24:415 (1978).CrossRefGoogle Scholar
  101. 101.
    W. J. Carr, Jr. and G. R. Wagner, Adv. Cryo. Eng. (Materials) 30:923 (1984).CrossRefGoogle Scholar
  102. 102.
    W. J. Carr, Jr., “AC Loss and Macroscopic Theory of Superconductors,” Gordon and Breach, New York (1983), pp. 63–67.Google Scholar
  103. 103.
    M. Ashkin, J. Appl. Phys. 50:7060 (1979).ADSCrossRefGoogle Scholar
  104. 104.
    V. B. Zenkevitch, A. S. Romanyuk, and V. V. Zheltov, Cryogenics 20:703 (1980).ADSCrossRefGoogle Scholar
  105. 105.
    C. Y. Pang, P. G. McLaren, and A. M. Campbell, Int. Cryo. Eng. Conf. 8:739 (1980).Google Scholar
  106. 106.
    J. V. Minervini, Adv. Cryo. Eng (Materials) 28:587 (1982).CrossRefGoogle Scholar
  107. 107.
    M. N. Wilson, “Superconducting Magnets,” Clarendon Press, Oxford, U.K. (1983), pp. 165–170.Google Scholar
  108. 108.
    K. V. Bhagwat and P. Chaddah, Physica C 166:1 (1990).ADSCrossRefGoogle Scholar
  109. 109.
    J. W. Ekin, Appl Phys. Lett. 55:905 (1989).ADSCrossRefGoogle Scholar
  110. 110.
    D. M. Kroeger, C. C. Koch, and J. P. Charlesworth, J. Low Temp. Phys. 19:493 (1975).ADSCrossRefGoogle Scholar
  111. 111.
    R. B. Goldfarb and A. F. Clark, J. Appl. Phys. 57:3809 (1985).ADSCrossRefGoogle Scholar
  112. 112.
    J. R. Cave, P. R. Critchlow, P. Lambert, and B. Champagne, IEEE Trans. Magn. 27:1379 (1991).ADSCrossRefGoogle Scholar
  113. 113.
    J. R. Clem, Physica C 153–155:50 (1988).CrossRefGoogle Scholar
  114. 114.
    J. Z. Sun, M. J. Scharen, L. C. Bourne, and J. R. Schrieffer, Phys. Rev. B 44:5275 (1991).ADSCrossRefGoogle Scholar
  115. 115.
    F. Gömöry and P. Lobotka, Solid State Commun. 66:645 (1988).CrossRefGoogle Scholar
  116. 116.
    D.-X. Chen, J. Nogués, and K. V. Rao, Cryogenics 29:800 (1989).ADSCrossRefGoogle Scholar
  117. 117.
    A. M. Campbell, J. Phys. C: Solid State Phys. 2:1492 (1969).ADSCrossRefGoogle Scholar
  118. 118.
    R. W. Rollins, H. Kupfer, and W. Gey, J. Appl. Phys. 45:5392 (1974).ADSCrossRefGoogle Scholar
  119. 119.
    H. Kupfer, I. Apfelstedt, R. Flükiger, C. Keller, R. Meier-Hirmer, B. Runtsch, A. Turowski, U. Wiech, and T. Wolf, Cryogenics 29:268 (1989).ADSCrossRefGoogle Scholar
  120. 120.
    H. A. Ullmaier, Phys. Stat. Sol. 17:631 (1966).ADSCrossRefGoogle Scholar
  121. 121.
    D. M. Kroeger, C. G. Koch, and W. A. Coghlan, J. Appl. Phys. 44:2391 (1973).ADSCrossRefGoogle Scholar
  122. 122.
    A. Shaulov and D. Dorman, Appl Phys. Lett. 53:2680 (1988).ADSCrossRefGoogle Scholar
  123. 123.
    E. M. Gyorgy, R. B. van Dover, K. A. Jackson, L. F. Schneemeyer, and J. V. Waszczak, Appl Phys. Lett. 55:283 (1989).ADSCrossRefGoogle Scholar
  124. 124.
    R. L. Peterson, J. Appl. Phys. 67:6930 (1990).ADSCrossRefGoogle Scholar
  125. 125.
    C. P. Bean and J. D. Livingston, Phys. Rev. Lett. 12:14 (1964).ADSCrossRefGoogle Scholar
  126. 126.
    R. W. Rollins and J. Silcox, Phys. Rev. 155:404 (1967).ADSCrossRefGoogle Scholar
  127. 127.
    D.-X. Chen, R. W. Cross, and A. Sanchez, unpublished, 1991.Google Scholar
  128. 128.
    S. A. Campbell, J. B. Ketterson, and G. W. Crabtree, Rev. Sci. Instrum. 54:1191 (1983).ADSCrossRefGoogle Scholar
  129. 129.
    B. Loegel, A. Mehdaoui, and D. Bolmont, Supercond. Sci. Technol 3:504 (1990).ADSCrossRefGoogle Scholar
  130. 130.
    R. W. Cross and R. B. Goldfarb, J. Appl Phys. 67:5476 (1990).ADSCrossRefGoogle Scholar
  131. 131.
    J. R. Clem, J. Appl Phys. 50, 3518 (1979).ADSCrossRefGoogle Scholar
  132. 132.
    R. B. Goldfarb, A. F, Clark, A. J. Panson, and A. I. Braginski, in: “High Temperature Superconductors,” D. U. Gubser and M. Schlüter, eds., Materials Research Society, Pittsburgh, EA-11:261 (1987).Google Scholar
  133. 133.
    R. J. Loughran and R. B. Goldfarb, Physica C 181:138 (1991).ADSCrossRefGoogle Scholar
  134. 134.
    E. Babic, Ž. Marohnic, D. Drobac, and M. Prester, Int. J. Mod. Phys. B 1:973 (1987).ADSCrossRefGoogle Scholar
  135. 135.
    M. Avirovic, Ch. Neumann, P. Ziemann, J. Geerk, and H. C. Li, Solid State Commun. 67:795 (1988).ADSCrossRefGoogle Scholar
  136. 136.
    L. Krusin-Elbaum, A. P. Malozemoff, Y. Yeshurun, D. C. Cronemeyer, and F. Holtzberg, Phys. Rev. B 39:2936 (1989).ADSCrossRefGoogle Scholar
  137. 137.
    V. V. Moshchalkov, J. Y. Henry, G. Marin, J. Rossat-Mignod, and J. F. Jacquot, Physica C 175:407 (1991).ADSCrossRefGoogle Scholar
  138. 138.
    E. W. Collings, A. J. Markworth, J. K. McCoy, K. R. Marken, Jr., M. D. Sumption, E. Gregory, and T. S. Kreilick, Adv. Cryo. Eng. (Materials) 36:255 (1990).CrossRefGoogle Scholar
  139. 139.
    S. Takacs, Czech. J. Phys. B 33:1248 (1983).ADSCrossRefGoogle Scholar
  140. 140.
    K.-H. Müller, Physica C 159:717 (1989).ADSCrossRefGoogle Scholar
  141. 141.
    R. B. Goldfarb and R. L. Spomer, Adv. Cryo. Eng. (Materials) 36:215 (1990).CrossRefGoogle Scholar
  142. 142.
    M. Nikolo and R. B. Goldfarb, Phys. Rev. B 39:6615 (1989).ADSCrossRefGoogle Scholar
  143. 143.
    T. T. M. Palstra, B. Batlogg, R. B. van Dover, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 41:6621 (1990).ADSCrossRefGoogle Scholar
  144. 144.
    J. H. P. M. Emmen, V. A. M. Brabers, and W. J. M. de Jonge, Physica C 176:137 (1991).ADSCrossRefGoogle Scholar
  145. 145.
    E. Maxwell and M. Strongin, Phys. Rev. Lett. 10:212 (1963).ADSCrossRefGoogle Scholar
  146. 146.
    G. D. Cody and R. E. Miller, Phys. Rev. 173:481 (1968).ADSCrossRefGoogle Scholar
  147. 147.
    L. M. Fisher, N. V. Il’yn, and I. F. Voloshin, Adv. Cryo. Eng. (Materials) 36:423 (1990).CrossRefGoogle Scholar
  148. 148.
    F. Irie and K. Yamafuji, J. Phys. Soc. Jpn. 23:255 (1967).ADSCrossRefGoogle Scholar
  149. 149.
    J. R. Clem, H. R. Kerchner, and S. T. Sekula, Phys. Rev. B 14:1893 (1976).ADSCrossRefGoogle Scholar
  150. 150.
    S. Takacs, F. Gömöry, and P. Lobotka, IEEE Trans. Magn. 27:1057 (1991).ADSCrossRefGoogle Scholar
  151. 151.
    A. F. Khoder, Phys. Lett. 94A:378 (1983).ADSGoogle Scholar
  152. 152.
    A. F. Khoder, M. Couach, and B. Barbara, Physica C 153-155:1477 (1988).ADSCrossRefGoogle Scholar
  153. 153.
    C. Lucchini, C. Giovannella, R. Messi, B. Lecuyer, L. Fruchter, and M. Iannuzzi Phys. Stat. Sol. B 157: K123 (1990).ADSCrossRefGoogle Scholar
  154. 154.
    A. Gianelli and C. Giovannella, Physica A 168:277 (1990).ADSCrossRefGoogle Scholar
  155. 155.
    R. A. Hein, H. Hojaji, A. Barkatt, H. Shafii, K. A. Michael, A. N. Thorpe, M. F. Ware, and S. Alterescu, J. Supercond. 2:427 (1989).ADSCrossRefGoogle Scholar
  156. 156.
    W. R. Abel, A. C. Anderson, and J. C. Wheatley, Rev. Sci. Instrum. 43:444 (1964).ADSCrossRefGoogle Scholar
  157. 157.
    W. L. Pillinger, P. S. Jastram, and J. G. Daunt, Rev. Sci. Instrum. 29:159 (1958).ADSCrossRefGoogle Scholar
  158. 158.
    S. C. Whitmore, S. R. Ryan, and T. M. Sanders, Rev. Sci. Instrum. 49:1579 (1978).ADSCrossRefGoogle Scholar
  159. 159.
    J. R. Owers-Bradley, Wen-Sheng Zhou, and W. P. Halperin, Rev. Sci. Instrum. 52:1106 (1981).ADSCrossRefGoogle Scholar
  160. 160.
    D.-X. Chen, “Ballistic and Bridge Methods of Magnetic Measurements of Materials,” China Metrology, Beijing (1990), pp. 526–572.Google Scholar
  161. 161.
    Ref. 107, pp. 243-249.Google Scholar
  162. 162.
    D. Shoenberg, Proc. Cambridge Phil. Soc. 33:559 (1937).ADSCrossRefGoogle Scholar
  163. 163.
    P. H. Müller, M. Schienle, and A. Kasten, J. Magn. Magn. Mater. 28:341 (1982).ADSCrossRefGoogle Scholar
  164. 164.
    T. Ishida, K. Monden, and I. Nakada, Rev. Sci. Instrum. 57:3081 (1986).ADSCrossRefGoogle Scholar
  165. 165.
    B. J. Dalrymple and D. E. Prober, Rev. Sci. Instrum. 55:958 (1984).ADSCrossRefGoogle Scholar
  166. 166.
    D. G. Xenikos and T. R. Lemberger, Rev. Sci. Instrum. 60:831 (1989).ADSCrossRefGoogle Scholar
  167. 167.
    J. N. Fox and J. U. Trefny, Am. J. Phys. 43:622 (1975).ADSCrossRefGoogle Scholar
  168. 168.
    J. G. Elliott and W. Y. Liang, Meas. Sci. Technol. 1:1351 (1990).ADSCrossRefGoogle Scholar
  169. 169.
    I. Maartense, Rev. Sci. Instrum. 41:657 (1970).ADSCrossRefGoogle Scholar
  170. 170.
    I. Maartense, J. Appl. Phys. 53:2466 (1982).ADSCrossRefGoogle Scholar
  171. 171.
    L. Hartshorn, J. Sci. Instrum. 2:145 (1925).ADSCrossRefGoogle Scholar
  172. 172.
    A. J. de Vries and J. W. M. Livius, Appl. Sci. Res. 17:31 (1967).CrossRefGoogle Scholar
  173. 173.
    H. A. Groenendijk, A. J. van Duyneveldt, and R. D. Willett, Physica B 101:320 (1980).CrossRefGoogle Scholar
  174. 174.
    J. L. Tholence, F. Holtzberg, T. R. McGuire, S. von Molnar, and R. Tournier, J. Appl. Phys. 50:7350 (1979).ADSCrossRefGoogle Scholar
  175. 175.
    A. J. van Duyneveldt, J. Appl. Phys. 53:8006 (1982).ADSCrossRefGoogle Scholar
  176. 176.
    A. F. Deutz, R. Hulstman, and F. J. Kranenburg, Rev. Sci. Instrum. 60:113 (1989).ADSCrossRefGoogle Scholar
  177. 177.
    A. K. Rastogi, Jawaharlal Nehru University, New Delhi, and J. L. Tholence, Centre National de la Recherche Scientifique, Grenoble, personal communication, 1985.Google Scholar
  178. 178.
    L. J. de Jongh, W. D. van Amstel, and A. R. Miedema, Physica 58:277 (1972).ADSCrossRefGoogle Scholar
  179. 179.
    K. Baberschke, Freie Universitát Berlin, personal communication, 1984.Google Scholar
  180. 180.
    F. R. Fickett, in: “Materials at Low Temperatures,” R. P. Reed and A. F. Clark, eds., American Society for Metals, Metals Park, Ohio (1983), pp. 164–165.Google Scholar
  181. 181.
    The flux from an ellipsoidal sample through a single-turn pick-up coil is calculated in: M. Denhoff, S. Gygax, and J. R. Long, Cryogenics 21:400 (1981).Google Scholar
  182. 182.
    R. B. Goldfarb and J. V. Minervini, Rev. Sci. Instrum. 55:761 (1984). On page 763, second column, line 3 and Fig. 3, “L*” should be “2L*.”.ADSCrossRefGoogle Scholar
  183. 183.
    L. Cohen, Bull. Bureau Standards 3:295 (1907).CrossRefGoogle Scholar
  184. 184.
    Ref. 76, pp. 205-207.Google Scholar
  185. 185.
    J. E. Zimmerman, Rev. Sci. Instrum. 32:402 (1961).ADSCrossRefGoogle Scholar
  186. 186.
    R. A. Matula, J. Phys. Chem. Ref. Data 8:1147 (1979).ADSCrossRefGoogle Scholar
  187. 187.
    R. M. Bozorth, “Ferromagnetism,” Van Nostrand, Princeton, New Jersey (1951), pp. 775–776.Google Scholar
  188. 188.
    R. G. Chambers and J. G. Park, Brit. J. Appl. Phys. 12:507 (1961).ADSCrossRefGoogle Scholar
  189. 189.
    M. D. Rosenthal and B. W. Maxfield, Rev. Sci. Instrum. 46:398 (1975).ADSCrossRefGoogle Scholar
  190. 190.
    A. M. Ricca and S. Zannella, IEEE Trans. Magn. 23:1422 (1987).ADSCrossRefGoogle Scholar
  191. 191.
    H. Zijlstra, “Experimental Methods in Magnetism,” Vol. 2, North-Holland, Amsterdam (1967), pp. 72–79.Google Scholar
  192. 192.
    S. Foner, Rev. Sci. Instrum. 46:1425 (1975).ADSCrossRefGoogle Scholar
  193. 193.
    J. S. Philo and W. M. Fairbank, Rev. Sci. Instrum. 48:1529 (1977).ADSCrossRefGoogle Scholar
  194. 194.
    P. J. Flanders, J. Appl. Phys. 63:3940 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • R. B. Goldfarb
    • 1
  • M. Lelental
    • 2
  • C. A. Thompson
    • 1
  1. 1.National Institute of Standards and TechnologyBoulderUSA
  2. 2.Eastman Kodak CompanyRochesterUSA

Personalised recommendations