Magnetically Modulated Resistance Techniques

  • B. F. Kim
  • K. Moorjani
  • F. J. Adrian
  • J. Bohandy


The method of magnetically modulated resistance (MMR) is a variant of resistance vs. temperature measurements in which the magnetic field dependence of resistance vs. temperature is measured. This general technique is particularly useful for study and characterization of superconductors because the superconducting phase transition and weak link effects, present in granular samples, are magnetic field dependent. Because the field dependence of the intrinsic phase transition is different from that of extrinsic effects due to granularity, it is possible to separately identify MMR responses due to these effects. Thus the species dependent and sample dependent responses can be separately recorded. Another important aspect of this technique is its anisotropic response to macroscopically oriented samples. This allows detection of oriented weak link structures in single crystals1,2 which would be difficult, if indeed possible, by other methods. In this paper, we present an overview of this method and some examples from recent studies.


Electron Spin Resonance Weak Link Microwave Absorption Superconducting Phase Transition Josephson Tunneling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bohandy, B. F. Kim, F. J. Adrian, K. Moorjani, S. D. D’Arcangelis, and D. O. Cowan, Phys. Rev. B 43:3724 (1991).ADSCrossRefGoogle Scholar
  2. 2.
    F. J. Adrian, B. F. Kim, K. Moorjani, and J. Bohandy, Phys. Rev. B (in press).Google Scholar
  3. 3.
    J. Bohandy, T. E. Phillips, F. J. Adrian, K. Moorjani, and B. F. Kim, Mod. Phys. Lett. B. 3:933 (1989).ADSCrossRefGoogle Scholar
  4. 4.
    B. F. Kim, J. Bohandy, K. Moorjani, and F. J. Adrian, J. Appl. Phys. 63:2029(1988).ADSCrossRefGoogle Scholar
  5. 5.
    G. Feher, Bell Syst. Tech. J. 36:449 (1957).Google Scholar
  6. 6.
    See, for example, J. A. Stratton, “Electromagnetic Theory,” McGraw-Hill (1941).Google Scholar
  7. 7.
    Materials exhibiting magneto-resistance will also elicit a response in this type of measurement. The nature of the response, however, is generally different from that of superconductors for which the response is due to a magnetic field dependent phase transition.Google Scholar
  8. 8.
    B. F. Kim, J. Bohandy, T. E. Phillips, F. J. Adrian, and K. Moorjani, Physica C 161:76(1989).ADSCrossRefGoogle Scholar
  9. 9.
    J. Bohandy, B. F. Kim, F. J. Adrian and K. Moorjani, Phys. Rev. B 39:2733(1989).ADSCrossRefGoogle Scholar
  10. 10.
    M. Tinkham, Phys. Rev. Lett. 61:1658 (1988).ADSCrossRefGoogle Scholar
  11. 11.
    Y. Yeshurun and A. P. Malozemoff, Phys. Rev. Lett 60:2202 (1988).ADSCrossRefGoogle Scholar
  12. 12.
    P. England, T. Venkatesan, X. D. Wu, A. Inam, M. S. Hegde, T. L. Cheeks and H. G. Craighead, Appl. Phys. Lett. 53:2336 (1988).ADSCrossRefGoogle Scholar
  13. 13.
    M. A. Dubson, S. T. Herbert, J. J. Calabrese, D. C. Harris, B. R. Patton and J. C. Garland, Phys. Rev. Lett. 53:1061 (1988).ADSCrossRefGoogle Scholar
  14. 14.
    G. Paterno, C. Alvani, S. Casadio, U. Gambardella and L. Maritato, Appl. Phys Lett. 53:609 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • B. F. Kim
    • 1
  • K. Moorjani
    • 1
  • F. J. Adrian
    • 1
  • J. Bohandy
    • 1
  1. 1.The Johns Hopkins University Applied Physics LabLaurelUSA

Personalised recommendations