Responses of High Tc Superconductors to Various Combinations of AC and DC Magnetic Fields

  • Fedor Gömöry


In the study of classical as well as high Tc superconductors, magnetic measurements are often used.1–4 In these experiments, the response of the sample to an applied magnetic field with the magnitude constant or changing in time is observed. In the former case one speaks about a DC measurement while in the later about an AC measurement, respectively. Sometimes the combination of AC and DC fields can be very helpful, too. Because it is common practice to use different terminology in reporting results of such experiments, we will define the basic terms used in what follows. First of all, to avoid problems caused only by the irregular shape of the sample, we consider a slim cylinder with a height much greater than its radius R, placed in a homogeneous magnetic field Bext parallel to the axis. In this case the field acting on the sample is equal to Bext. However, one should not neglect the fact that the magnetization inside the superconducting sample is in general not homogeneous.


Critical Current Density Magnetization Loop Phase Sensitive Detector Irreversibility Line Magnetic Field Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Ullmeier, Irreversible Properties of Type II Superconductors, Springer-Verlag, Berlin, 1975.CrossRefGoogle Scholar
  2. 2.
    M. N. Wilson, Superconducting Magnets, Claredon Press, Oxford, 1983.Google Scholar
  3. 3.
    A. P. Malozemoff, in Physical Properties of High Temperature Superconductors, ed. D.M. Ginsberg, World Scientific Publishing Co., Singapore, 1989.Google Scholar
  4. 4.
    F. Gömöry, Thermochimica Acta 174, 299, (1991).CrossRefGoogle Scholar
  5. 5.
    S. Senoussi, M. Oussena and S. Hadjoudj, J.Appl.Phys. 63, 447, (1988).CrossRefGoogle Scholar
  6. 6.
    A.K. Grover, C. Radhakrishnamurty, P. Chaddah, G. Ravi Kumar and G.V. Subba Rao, Pramana 30, 569, (1988).ADSCrossRefGoogle Scholar
  7. 7.
    E. Maxwell and M. Strongin, Phys. Rev. Lett. 10, 212, (1963).ADSCrossRefGoogle Scholar
  8. 8.
    M. Couach, A.F. Khoder and F. Monnier, Cryogenics 25, 695, (1985).CrossRefGoogle Scholar
  9. 9.
    R.A. Hein, Phys.Rev.B 33, 7539, (1986).ADSCrossRefGoogle Scholar
  10. 10.
    T. Ishida and H. Mazaki, Jpn.J.Appl.Phys 26, L1296,(1987).ADSCrossRefGoogle Scholar
  11. 11.
    R. B. Goldfarb, A.F. Clark, A.I. Braginski and A.J. Panson, Crygenics 27, 475, (1987).CrossRefGoogle Scholar
  12. 12.
    J. Garcia, C. Rillo, F. Lera, J. Bartolome, R. Navarro, D.H. A. Blank and J. Flokstra, J.Magn.Magn.Mater. 69, L225, (1987).ADSCrossRefGoogle Scholar
  13. 13.
    F. Gömöry and P. Lobotka, Solid State Comm. 66, 645, (1988).CrossRefGoogle Scholar
  14. 14.
    A.M. Campbell, J.Phys. C 2, 1492, (1969).ADSCrossRefGoogle Scholar
  15. 15.
    P. Dubots and J. Cave, Cryogenics 28, 661, (1988).CrossRefGoogle Scholar
  16. 16.
    F. Gömöry, Solid State Comm. 70, 879, (1989).CrossRefGoogle Scholar
  17. 17.
    F. Gömöry, S. Takács, P. Lobotka, K. Fröhlich and V. Plechacek, Physica C 160, 1, (1989).ADSCrossRefGoogle Scholar
  18. 18.
    C.P. Bean, Rev.Mod. Phys 36, 31, (1963).ADSCrossRefGoogle Scholar
  19. 19.
    J.R. Clem, Physica C 159, 717, (1989).CrossRefGoogle Scholar
  20. 20.
    B. Loegel, A. Mehdaoui and D. Bol mont, Supercond. Sci. Tech. 3, 504, (1990).ADSCrossRefGoogle Scholar
  21. 21.
    K.-H. Müller, Physica C 168, 585, (1990).ADSCrossRefGoogle Scholar
  22. 22.
    D.-X. Chen and R. Goldfarb, J.Appl.Phys. 66, 2489, (1989).ADSCrossRefGoogle Scholar
  23. 23.
    P. Berg and G. Kozlowski, Mod.Phys.Lett B 3, 1163, (1989).ADSCrossRefGoogle Scholar
  24. 24.
    D.-X. Chen, A. Sanchez, T. Puig, L.M. Martinez and J.S. Munoz, Physica C 168, 652, (1990).ADSCrossRefGoogle Scholar
  25. 25.
    H. Küpfer, I. Apfelstedt, R. Flükiger, C. Keller, R. Meier-Hirmer, B. Runtsch, A. Turowski, U. Wiech and T. Wolf, Cryogenics 28, 650, (1988).ADSCrossRefGoogle Scholar
  26. 26.
    H. Küpfer, I. Apfelstedt, R. Flükiger, C. Keller, R. Meier-Hi rmer, B. Runtsch, A. Turowski, U. Wiech and T. Wolf, Cryogenics 29, 268, (1989).CrossRefGoogle Scholar
  27. 27.
    P.A. Godelaine and M. Ausloos, Solid State Comm. 73, 759, (1990).ADSCrossRefGoogle Scholar
  28. 28.
    B. Ni, T. Munakata, T. Matsushita, M. Ivakuma, F. Funaki, M. Takeo and K. Yamafuji, Jap.J.Appl.Phys 27, 1658, (1988).ADSCrossRefGoogle Scholar
  29. 29.
    D.-X. Chen, J. Nogues and K.V. Rao, Cryogenics 29, 800, (1989).ADSCrossRefGoogle Scholar
  30. 30.
    K.-H. Müller, J.C. MacFarlane and R. Driver, Physica C 158, 69, (1989).ADSCrossRefGoogle Scholar
  31. 31.
    A.M. Campbell and F.J. Blunt, Supercond.Sci.Technol. 3, 450, (1990).ADSCrossRefGoogle Scholar
  32. 32.
    S. Senoussi, C. Aguillon and P. Manuel, Physica C 175, 202, (1991).ADSCrossRefGoogle Scholar
  33. 33.
    G. Ravi Kumar and P. Chaddah, Phys.Rev.B 39, 4704, (1989).ADSCrossRefGoogle Scholar
  34. 34.
    S. F. Wahid and N.K. Jaggi, Physica C 170, 395, (1990).ADSCrossRefGoogle Scholar
  35. 35.
    A.M. Campbell and F.J. Blunt, Physica C 172, 253, (1990).ADSCrossRefGoogle Scholar
  36. 36.
    T. Ishida and R.B. Goldfarb, Phys.Rev.B 41, 8937, (1990).ADSCrossRefGoogle Scholar
  37. 37.
    M. Forsthuber, G. Hilscher and F. Ludwig, Topics in Solid State Science 99, 69, (1990).Google Scholar
  38. 38.
    Y.B. Kim, C.F. Hempstead and A. R. Strnad, Phys. Rev. A 139, 1163, (1965).ADSGoogle Scholar
  39. 39.
    F. Gömöry, S. Takács and P. Lobotka, in Studies of High Temperature Superconductors, Vol. 6, ed. A. Narlikar, Nova Science Publishers, New York, 1990.Google Scholar
  40. 40.
    V. Plecháček and F. Gömöry, Solid State Comm. 73, 349, (1990).ADSCrossRefGoogle Scholar
  41. 41.
    J.R. Clem and V.R. Kogan, Jap. J. Appl. Phys. 26, Suppl. 26–3, 1161, (1987).Google Scholar
  42. 42.
    A. P. Malozemoff, L. Krusin-Elbaum, D.C. Cronemeyer, Y. Yeshurun and F. Holtzberg, Phys. Rev.B 38, 6490, (1988).ADSCrossRefGoogle Scholar
  43. 43.
    L. Civale, A.D. Marwick, M. W. McElfresh, T.K. Wothington, A. P. Malozemoff, F.H. Holtzberg, J.R. Thompson and M. A. Kirk, Phys.Rev.Letters 65, 1164, (1990).ADSCrossRefGoogle Scholar
  44. 44.
    M. R. Beasley, R. Labusch and W. W. Webb, Phys. Rev. 181, 682, (1969).ADSCrossRefGoogle Scholar
  45. 45.
    G. Shaw, S.D. Murphy, Z-Y. Li, A.M. Stewart and S. M. Bhagat, IEEE Trans.Magn. 25, 3512, (1989).ADSCrossRefGoogle Scholar
  46. 46.
    S.L. Shindé, J. Morril, D. Goland, D. A. Chance and T.M. Guire, Phys.Rev.B 41, 8838, (1990).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Fedor Gömöry
    • 1
  1. 1.Inst. of Electrical EngineeringSlovak Academy of SciencesBratislavaCzech and Slovak Federal Republic

Personalised recommendations