Skip to main content

A Generalization of Orbital Morphisms of Hypergroups

  • Chapter

Abstract

A very general principle to derive a hypergroup from a locally compact group G may roughly be described as follows: Take a partition K of G consisting of compact subsets such that the canonical mapping Φ: GK is continuous and open with respect to the quotient topology on K.

Most parts of this paper were written at Murdoch University in Western Australia while the author held a Feodor Lynen fellowship of the Alexander von Humboldt foundation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dunkl, C.F.: The measure algebra of a locally compact hypergroup. Trans. Amer. Math. Soc. 179, 331–348 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  2. Erdeyli, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of Integral Transforms, Vol. 1. New York — Toronto — London: McGraw-Hill 1954.

    Google Scholar 

  3. Greenleaf, F.P.: Invariant Means on Topological Groups. New York — Toronto: Van Nostrand 1969.

    MATH  Google Scholar 

  4. Hartmann, K., Henrichs, R.W., Lasser, R.: Duals of orbit spaces in groups with relatively compact inner automorphism groups are hypergroups. Mh. Math. 88, 229–238 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  5. Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis I. Berlin — Heidelberg-New York: Springer 1979.

    Google Scholar 

  6. Heyer, H.: Probability theory on hypergroups: A survey. Probability Measures on Groups VII. Proc. Conf., Oberwolfach, 1983, 481–550. Lecture Notes in Math., Vol. 1064, Berlin — Heidelberg — New York: Springer 1984.

    Book  Google Scholar 

  7. Jewett, R.I.: Spaces with an abstract convolution of measures. Adv. Math. 18, 1–101 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  8. Kingman, J.F.C.: Random walks with spherical symmetry. Acta Math. 109, 11–53 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  9. Voit, M.: Positive characters on commutative hypergroups and some applications. Math. Z. 198, 405–421 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  10. Voit, M.: Central limit theorems for random walks on IN0 that are associated with orthogonal polynomials. J. Multiv. Analysis 34, 290–322 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Voit, M.: On the dual space of a commutative hypergroup. Arch. Math. (1991). To appear.

    Google Scholar 

  12. Voit, M.: Pseudoisotropic random walks on free groups and semigroups. J. Multiv. Analysis (1991). To appear.

    Google Scholar 

  13. Voit, M.: On the Fourier transformation of positive, positive definite measures on commutative hypergroups, and dual convolution structures. Submitted to Manuscr. Math.

    Google Scholar 

  14. Zeuner, Hrn.: Properties of the cosh hypergroup. Probability Measures on Groups IX. Proc. Conf., Oberwolfach, 1988, 425–434. Lecture Notes in Math., Vol. 1379, Berlin — Heidelberg — New York: Springer 1989.

    Google Scholar 

  15. Zeuner, Hm.: One-dimensional hypergroups. Adv. Math. 76, 1–18 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  16. Zeuner, Hm.: Laws of large numbers for hypergroups on ℝ+. Math. Ann. 283, 657–678 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  17. Zeuner, Hm.: The central limit theorem for Chebli-Trimeche hypergroups. J. of Theoretical Probability 2, 51–63 (1989).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Voit, M. (1991). A Generalization of Orbital Morphisms of Hypergroups. In: Heyer, H. (eds) Probability Measures on Groups X. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2364-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2364-6_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2366-0

  • Online ISBN: 978-1-4899-2364-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics