Skip to main content

Methanol-Utilizing Yeasts

  • Chapter
Methane and Methanol Utilizers

Part of the book series: Biotechnology Handbooks ((BTHA,volume 5))

Abstract

The ability of yeasts to grow on methanol as a source of carbon and energy has been discovered relatively recently. Whereas bacterial utilization of methanol was found before the end of the previous century, it was not until 1969 that growth of eukaryotic microorganisms at the expense of this one-carbon compound was reported (Ogata et al. 1969). Independent studies by several other research groups soon followed this first report and established that a variety of yeasts (Lee and Komagata, 1980a) and some filamentous fungi (Goncharova et al., 1977) are able to utilize methanol as a source of carbon and energy for growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allais, J. J., Louktibi, A., and Baratti, J., 1983a, Oxidation of methanol by the yeast, Pichia pastoris, purification and properties of the formaldehyde dehydrogenase, Agric. Biol. Chem. 47:1509–1516.

    CAS  Google Scholar 

  • Allais, J. J., Louktibi, A., and Baratti, J., 1983b, Oxidation of methanol by the yeast Pichia pastoris. Purification and properties of the formate dehydrogenases, Agric. Biol. Chem. 47:2547–2554.

    CAS  Google Scholar 

  • Anthony, C., 1982, Biochemistry of Methylotrophs, Academic Press, London.

    Google Scholar 

  • Anthony, C., and Jones, C. W., 1987, Energy metabolism of aerobic, methylotrophic bacteria, in: Microbial Growth on C 1 Compounds (H. W. van Verseveld and J. A. Duine, eds.), Martinus Nijhoff, Dordrecht, pp. 195–202.

    Google Scholar 

  • Attwood, M. M., and Dijken, J. P. van, 1982, Characteristics of fructose-1,6-bisphosphatase from the methanol-utilizing yeast Hansenula polymorpha, J. Gen. Microbiol. 128:2313–2317.

    CAS  Google Scholar 

  • Baratti, J., Couderc, R., Cooney, C. L., and Wang, D. I. C., 1978, Preparation and properties of immobilized methanol oxidase, Biotechnol. Bioeng. 20:333–348.

    CAS  Google Scholar 

  • Benevolenskii, S. V., and Tolstorukov, I. I., 1980, Study of the mechanisms of mating and self-diploidization in haploid yeasts Pichia pinus. III. Study of heterothallic mutants, Genetiha 16:1342–1349.

    Google Scholar 

  • Bieber, R., and Trümpier, G., 1947, Angenäherte spektrographische Bestimmung der Hydratationsgleichgewichtskonstanten wäßriger Formaldehydlösungen, Helv. Chim. Acta 30:1860–1865.

    CAS  Google Scholar 

  • Bodunova, E. N., Donich, V. N., Nesterova, G. F., and Soom, Y. O., 1986a, Genetic lines of Hansenula polymorpha yeast. Communication I. Preparation and characterization of genetic lines, Genetika 22:741–747.

    Google Scholar 

  • Bodunova, E. N., Donich, V. N., and Nesterova, G. F., 1986b, Genetic lines of Hansenula polymorpha yeast. II. Inheritance of abnormalities in meiotic segregation, Genetika 22:939–950.

    Google Scholar 

  • Borst, P., 1989, Peroxisome biogenesis revisited, Biochim. Biophys. Acta 1008:1–13.

    PubMed  CAS  Google Scholar 

  • Brooke, A. G., Dijkhuizen, L., and Harder, W., 1986, Regulation of flavin biosynthesis in the methylotrophic yeast Hansenula polymorpha, Arch. Microbiol. 145:62–70.

    CAS  Google Scholar 

  • Bystrykh, L. V., 1985, Kinetic properties of dihydroxyacetone kinase of the methylotrophic yeast Candida boidinii, Biochemistry (USSR). 40:1611–1616.

    Google Scholar 

  • Bystrykh, L. V., Sokolov, A. P., and Trotsenko, Y. A., 1981, Purification and properties of dihydroxyacetone synthase from the methylotrophic yeast Candida boidinii, FEBS Lett. 132:324–328.

    CAS  Google Scholar 

  • Bystrykh, L. V., Aminova, L. R., and Trotsenko, Y. A., 1988, Methanol metabolism in mutants of the methylotrophic yeast Hansenula polymorpha, FEMS Microbiol. Lett. 51:89–94.

    CAS  Google Scholar 

  • Bystrykh, L. V., Romanov, V. P., Steczko, J., and Trotsenko, Y. A., 1989, Catalytic variability of alcohol oxidase from the methylotrophic yeast Hansenula polymorpha, Biotechnol. Appl. Biochem. 11:184–192.

    CAS  Google Scholar 

  • Campbell, I., 1973, Numerical analysis of Hansenula, Pichia and related yeast genera, J. Gen. Microbiol. 77:427–441.

    Google Scholar 

  • Couderc, R., and Baratti, J., 1980, Oxidation of methanol by the yeast, Pichia pastoris. Purification and properties of the alcohol oxidase, Agric. Biol. Chem. 44:2279–2289.

    CAS  Google Scholar 

  • Cregg, J. M., 1987, Genetics of methylotrophic yeasts, in: Microbial Growth on C 1 Compounds (H. W. van Verseveld and J. A. Duine, eds.), Martinus Nijhoff, Dordrecht, pp. 158–167.

    Google Scholar 

  • Cregg, J. M., Barringer, K. J., Hessler, A. Y., and Madden, K. R., 1985, Pichia pastoris as a host system for transformations, Mol. Cell. Biol. 5:3376–3385.

    PubMed  CAS  Google Scholar 

  • Cregg, J. M., Tschopp, J. F., Stillman, C., Siegel, R., Akong, M., Craig, W. S., Buckholz, R. G., Madden, K. R., Kellaris, P. A., Davis, G. R., Smiley, B. L., Cruze, J., Torregrossa, R., Velicelebi, G., and Thill, G. P., 1987, High-level expression and efficient assembly of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris, Bio/Technology 5:479–485.

    CAS  Google Scholar 

  • Cregg, J. M., Madden, K. R., Barringer, K. J., Thill, G. P., and Stillman, C. A., 1989, Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris, Mol. Cell. Biol. 9:1315–1323.

    Google Scholar 

  • Denenu, E. O., and Demain, A. L., 1981a, Enzymatic basis for overproduction of tryptophan and its metabolites in Hansenula polymorpha mutants, Appl. Environm. Microbiol. 42:497–501.

    CAS  Google Scholar 

  • Denenu, E. O., and Demain, A. L., 1981b, Relationship between genetic deregulation of Hansenula polymorpha and production of tryptophan metabolites, Eur. J. Appl. Microbiol. Biotechnol. 13:202–207.

    CAS  Google Scholar 

  • Digan, M. E., and Lair, S. V., 1986, Genetic methods for the methylotrophic yeast Pichia pastoris, Thirteenth International Conference on Yeast Genetics and Molecular biology, Banff, Alberta, Canada, Book of abstracts, p. 589.

    Google Scholar 

  • Dijken, J. P. van, and Harder, W., 1974, Optimal conditions for the enrichment and isolation of methanol-assimilating yeasts, J. Gen. Mkrobiol. 84:409–411.

    Google Scholar 

  • Dijken, J. P. van, Otto, R., and Harder, W., 1976, Growth of Hansenula polymorpha in a methanol-limited chemostat. Physiological responses due to the involvement of methanol oxidase as a key enzyme in methanol metabolism, Arch. Microbiol. 111:137–144.

    PubMed  Google Scholar 

  • Dijken, J. P. van, Harder, W., Beardsmore, A. J., and Quayle, J. R., 1978, Dihydroxyacetone: an intermediate in the assimilation of methanol by yeasts? FEMS Mkrobiol. Lett. 4:97–102.

    Google Scholar 

  • Dijken, J. P. van, Harder, W., and Quayle, J. R., 1981, Energy transduction and carbon assimilation in methylotrophic yeasts, in: Microbial Growth on C 1 Compounds (H. Dalton, ed.), Heyden, London, pp. 191–201.

    Google Scholar 

  • Dijkhuizen, L., Hansen, T. A., and Harder, W., 1985, Methanol, a potential feedstock for biotechnological processes, Trends Biotechnol. 3:262–267.

    CAS  Google Scholar 

  • Douma, A. C., Veenhuis, M., de Koning, W., Evers, M., and Harder, W., 1985, Dihydroxyacetone synthase is localized in the peroxisomal matrix of methanol-grown Hansenula polymorpha, Arch. Microbiol. 143:237–243.

    CAS  Google Scholar 

  • Douma, A. C., Veenhuis, M., Suiter, G. J., and Harder, W., 1987, A proton-translocating adenosine triphosphatase is associated with the peroxisomal membrane of yeasts, Arch. Microbiol. 147:42–47.

    PubMed  CAS  Google Scholar 

  • Douma, A. C., Veenhuis, M., Waterham, H. R., and Harder, W., 1990, Immunological demonstration of the peroxisomal ATPase of yeasts, Yeast 6:45–52.

    PubMed  CAS  Google Scholar 

  • Eggeling, L., and Sahm, H., 1978, Derepression and partial insensitivity to carbon catabolite repression of the methanol dissimilating enzymes in Hansenula polymorpha, Eur. J. Appl. Microbiol. Biotechnol. 5:197–202.

    CAS  Google Scholar 

  • Eggeling, L., and Sahm, H., 1980, Regulation of alcohol oxidase synthesis in Hansenula polymorpha: oversynthesis during growth on mixed substrates and induction by methanol, Arch. Microbiol. 127:119–124.

    PubMed  CAS  Google Scholar 

  • Eggeling, L., and Sahm, H., 1981, Enhanced utilization-rate of methanol during growth on a mixed substrate: a continuous culture study with Hansenula polymorpha, Arch. Microbiol. 130:362–124.

    CAS  Google Scholar 

  • Egli, T., 1982, Regulation of protein synthesis in methylotrophic yeasts: Repression of methanol dissimilating enzymes by nitrogen limitation, Arch. Mkrobiol. 131:95–101.

    CAS  Google Scholar 

  • Egli, T., and Harder, W., 1984, Growth of methylotrophs on mixed substrates, in: Microbial Growth on C 1 Compounds (R. L. Crawford and R. S. Hanson, eds.), American Society for Microbiology, Washington, DC, pp. 330–337.

    Google Scholar 

  • Egli, T., and Lindley, N. D., 1984, Mitochondrial activities in the methylotrophic yeast Kloeckera sp. 2201 during growth with glucose and/or methanol, J. Gen. Mkrobiol. 130:3239–3249.

    CAS  Google Scholar 

  • Egli, T., Dijken, J. P. van, Veenhuis, M., Harder, W., and Fiechter, A., 1980, Methanol metabolism in yeasts: regulation of the synthesis of catabolic enzymes, Arch. Microbiol. 124:115–121.

    CAS  Google Scholar 

  • Egli, T., Käppeli, O., and Fiechter, A., 1982a, Regulatory flexibility of methylotrophic yeasts in chemostat cultures: Simultaneous assimilation of glucose and methanol at a fixed dilution rate, Arch. Microbiol. 131:1–7.

    CAS  Google Scholar 

  • Egli, T., Käppeli, O., and Fiechter, A., 1982b, Mixed substrate growth of methylotrophic yeasts in chemostat culture: Influence of the dilution rate on the utilization of a mixture of glucose and methanol, Arch. Microbiol. 131:8–13.

    CAS  Google Scholar 

  • Egli, T., Haltmaier, T., and Fiechter, A., 1982c, Regulation of the synthesis of methanol oxidizing enzymes in Kloeckera sp. 2201 and Hansenula polymorpha, a comparison, Arch. Microbiol. 131:174–175.

    CAS  Google Scholar 

  • Egli, T., Lindley, N. D., and Quayle, J. R., 1983, Regulation of enzyme synthesis and variation of residual methanol concentration during carbon-limited growth of Kloeckera sp. 2201 on mixtures of methanol and glucose, J. Gen. Microbiol. 129:1269–1281.

    CAS  Google Scholar 

  • Egli, T., Bosshard, C., and Hamer, G., 1986, Simultaneous utilization of methanol-glucose mixtures by Hansenula polymorpha in chemostat: influence of dilution rate and mixture composition on utilization pattern, Biotechnol. Bioeng. 28:1735–1741.

    PubMed  CAS  Google Scholar 

  • Fujii, T., and Tonomura, K., 1972, Oxidation of methanol, formaldehyde and formate by a Candida species, Agric. Biol. Chem. 36:2297–2306.

    CAS  Google Scholar 

  • Fujii, T., Yamamoto, H., Takenaka, E., Fujinami, K., Ando, A., and Yabuki, M., 1988, Intraspecific hybridization of a methanol-utilizing yeast, Candida sp. N-16, through protoplast fusion, Agric. Biol. Chem. 52:1661–1667.

    CAS  Google Scholar 

  • Giuseppin, M. L. F., 1988, Optimization of methanol oxidase production by Hansenula polymorpha: an applied study on physiology and fermentation, Ph.D. thesis, Technical University of Delft, The Netherlands.

    Google Scholar 

  • Giuseppin, M. L. F., van Eijk, H. M. J., Verduyn, C., Bante, I., and van Dijken, J. P., 1988a, Production of catalase-free methanol oxidase (MOX) by Hansenula polymorpha, Appl. Microbiol. Biotechnol. 28:14–19.

    CAS  Google Scholar 

  • Giuseppin, M. L. F., van Eijk, H. M. J., and Bes, B. C. M., 1988b, Molecular regulation of methanol oxidase activity in continuous cultures of Hansenula polymorpha, Biotechnol. Bioeng. 32:577–583.

    CAS  Google Scholar 

  • Giuseppin, M. L. F., van Eijk, H. M. J., Bos, A., Verduyn, C., and van Dijken, J. P., 1988c, Utilization of methanol by a catalase-negative mutant of Hansenula polymorpha, Appl. Microbiol. Biotechnol. 28:286–292.

    CAS  Google Scholar 

  • Gleeson, M. A., 1986, The genetic analysis of the methylotrophic yeast Hansenula polymorpha, Ph.D. thesis, University of Sheffield, U.K.

    Google Scholar 

  • Gleeson, M. A., and Sudbery, P. E., 1988a, The methylotrophic yeasts, Yeast 4:1–15.

    CAS  Google Scholar 

  • Gleeson, M. A., and Sudbery, P. E., 1988b, Genetic analysis in the methylotrophic yeast Hansenula polymorpha, Yeast 4:293–303.

    CAS  Google Scholar 

  • Gleeson, M. A., Waites, M. J., and Sudbery, P. E., 1984, Development of techniques for genetic analysis in the methylotrophic yeast Hansenula polymorpha, in: Microbial Growth on C 1 Compounds (R. L. Crawford and R. S. Hanson, eds.), American Society for Microbiology, Washington, DC, pp. 228–243.

    Google Scholar 

  • Gleeson, M. A., Ortori, G. S., and Sudbery, P. E., 1986, Transformation of the methylotrophic yeast Hansenula polymorpha, J. Gen. Microbiol. 132:3459–3465.

    CAS  Google Scholar 

  • Goncharova, I. A., Babitskaya, V. G., and Lobanok, A. G., 1977, Growth and formation of protein biomass by fungi Trichoderma and Penicillium on methanol, in: Microbial Growth on C 1 Compounds (G. K. Skryabin, M. V. Ivanov, E. N. Kondratjeva, G. A. Zavarzin, Y. A. Trotsenko, and A. I. Nesterov, eds.), USSR Academy of Sciences, Moscow, pp. 187.

    Google Scholar 

  • Goodman, J. M., 1985, Dihydroxyacetone synthase is an abundant constituent of the methanol-induced peroxisome of Candida boidinii, J. Biol. Chem. 260:7108–7113.

    CAS  Google Scholar 

  • Harder, W., Trotsenko, Y. A., Bystrykh, L. V., and Egli, T., 1987, Metabolic regulation in methylotrophic yeasts, in: Microbial Growth on C 1 Compounds (H. W. van Verseveld and J. A. Duine, eds.), Martinus Nijhoff, Dordrecht, pp. 139–149.

    Google Scholar 

  • Hazeu, W., de Bruin, J. C., and Bos, P., 1972, Methanol assimilation by yeasts, Arch. Mikrobiol. 87:185–188.

    PubMed  CAS  Google Scholar 

  • Hopkins, T. R., and Muller, F., 1987, Biochemistry of alcohol oxidase, in: Microbial Growth on C 1 Compounds (H. W. van Verseveld and J. A. Duine, eds.), Martinus Nijhoff, Dordrecht, pp. 150–157.

    Google Scholar 

  • Janowicz, Z. A., Eckart, M. R., Drewke, C., Roggenkamp, R. O., Hollenberg, C. P., Maat, J., Ledeboer, A. M., Visser, C., and Verrips, C. T., 1985, Cloning and characterization of the DAS gene encoding the major methanol assimilatory enzyme from the methylotrophic yeast Hansenula polymorpha, Nucl. Acids Res, 13:3043–3062.

    CAS  Google Scholar 

  • Kato, K., Kurimura, Y., Makiguchi, N., and Asai, Y., 1974, Determination of methanol strongly assimilating yeasts, J. Gen. Appl. Microbiol. 20:123–127.

    Google Scholar 

  • Kato, N., Omory, Y., Tani, Y., and Ogata, K., 1976, Alcohol oxidases of Kloeckera sp. and Hansenula polymorpha, Catalytic properties and subunit structures, Eur. J. Biochem. 64:341–350.

    PubMed  CAS  Google Scholar 

  • Kato, N., Nishizawa, T., Sakazawa, C., Tani, Y., and Yamada, H., 1979, Xylulose 5-phosphate dependent fixation of formaldehyde in a methanol-utilizing yeast Kloeckera sp. no. 2201, Agric. Biol. Chem. 43:2013–2015.

    CAS  Google Scholar 

  • Kato, N., Higuchi, T., Sakazawa, C., Nishizawa, T., Tani, Y., and Yamada, H., 1982, Purification and properties of a transketolase responsible for formaldehyde fixation in a methanol-utilizing yeast, Candida boidinii (Kloeckera sp.) no. 2201, Biochim. Biophys. Acta 715:143–150.

    PubMed  CAS  Google Scholar 

  • Kato, N., Kobayashi, H., Shimao, M., and Sakazawa, C., 1986, Dihydroxyacetone production from methanol by a dihydroxyacetone kinase deficient mutant of Hansenula polymorpha, Appl. Microbiol. Biotechnol. 23:180–186.

    CAS  Google Scholar 

  • Komagata, K., 1981, Taxonomic studies of methanol-utilizing yeasts, in: Microbial Growth on C 1 Compounds (H. Dalton, ed.), Heyden, London, pp. 301–311.

    Google Scholar 

  • Koning, W. de, Gleeson, M. A G., Harder, W., and Dijkhuizen, L., 1987a, Regulation of methanol metabolism in the yeast Hansenula polymorpha: isolation and characterization of mutants blocked in methanol assimilatory enzymes, Arch. Microbiol. 147:375–382.

    Google Scholar 

  • Koning, W. de, Harder, W., and Dijkhuizen, L., 1987b, Glycerol metabolism in the methylotrophic yeast Hansenula polymorpha: phosphorylation as the initial step, Arch. Microbiol. 148:314–320.

    Google Scholar 

  • Koning, W. de, Bonting, K., Harder, W., and Dijkhuizen, L., 1990a, Classical transketolase functions as the formaldehyde-assimilating enzyme during growth of a dihydroxyacetone synthase-negative mutant of the methylotrophic yeast Hansenula polymorpha on mixtures of xylose and methanol in continuous cultures, Yeast 6:117–125.

    Google Scholar 

  • Koning, W. de, Weusthuis, R. A., Harder, W., and Dijkhuizen, L., 1990b, Methanol-dependent production of dihydroxyacetone and glycerol by mutants of the methylotrophic yeast Hansenula polymorpha blocked in dihydroxyacetone kinase and glycerol kinase, Appl. Microbiol. Biotechnol. 32:693–698.

    Google Scholar 

  • Kregervan Rij, N. J. W. (ed.), 1984, The Yeasts, Elsevier, Amsterdam.

    Google Scholar 

  • Kurzman, C. P., 1984, Synonomy of the yeast genera Hansenula and Pichia demonstrated through comparisons of deoxyribonucleic acid relatedness, Antonie van Leeuwenhoek 50:209–217.

    Google Scholar 

  • Kurzman, C. P., and Phaff, H. J., 1987, Molecular Taxonomy, in: The Yeasts, Vol. 1, Biology of Yeasts (A. H. Rose and J. S. Harrison, eds.), Academic Press, London, pp. 63–94.

    Google Scholar 

  • Kurzman, C. P., Smiley, M. J., and Johnson, C. J., 1980a, Emendation of the genus Issatchenkia Kudriavzev and comparison of species by deoxyribonucleic acid reassociation, mating reaction, and ascospore ultrastructure, Int. J. Syst. Bacteriol. 30:503–513.

    Google Scholar 

  • Kurzman, C. P., Smiley, M. J., Johnson, C. J., Wickerham, L. J., and Fuson, G. B., 1980b, Two new and closely related heterothallic species, Pichia amylophila and Pichia mississippiensis: characterization by hybridization and deoxyribonucleic acid reassociation, Int. J. Syst. Bacteriol. 30:208–216.

    Google Scholar 

  • Lahtchev, K., and Tuneva, D., 1986, Mitotic segregation in hybrid of methylotrophic yeast Candida pelliculosa, Curr. Microbiol. 14:121–125.

    Google Scholar 

  • Ledeboer, A. M., Edens, L., Maat, J., Visser, C., Bos, J. W., Verrips, C. T., Janowicz, Z., Eckart, M., Roggenkamp, R., and Hollenberg, C. P., 1985, Molecular cloning and characterization of a gene coding for alcohol oxidase in Hansenula polymorpha, Nucl. Acids Res. 13:3063–3082.

    CAS  Google Scholar 

  • Lee, J. D., and Komagata, K., 1980a, Taxonomic study of methanol-assimilating yeasts, J. Gen. Appl. Microbiol. 26:133–158.

    CAS  Google Scholar 

  • Lee, J. D., and Komagata, K., 1980b, Pichia cellobiosa, Candida cariosilignicola and Candida succiphila, new species of methanol-assimilating yeasts, Int. J. Syst. Bacteriol. 30:514–519.

    CAS  Google Scholar 

  • Lee, J. D., and Komagata, K., 1983, Further taxonomic study of methanol-assimilating yeasts with special references to electrophoretic comparison of enzymes, J. Gen. Appl. Microbiol. 29:395–416.

    CAS  Google Scholar 

  • Levine, D. W., and Cooney, C. L., 1973, Isolation and characterization of a thermotolerant methanol-utilizing yeast, Appl. Microbiol. 26:982–990.

    PubMed  CAS  Google Scholar 

  • Linton, J. D., and Niekus, H. G. D., 1987, The potential of one-carbon compounds as fermentation feedstocks, in: Microbial Growth on C 1 Compounds (H. W. van Verseveld and J. A. Duine, eds.), Martinus Nijhoff, Dordrecht, pp. 263–271.

    Google Scholar 

  • Miller, M. W., Phaff, H. J., Miranda, M., Heed, W. B., and Starmer, W. T., 1976, Torulopsis sonorensis, a new species of the genus Torulopsis, Int. J. Syst. Bacteriol. 26:88–91.

    Google Scholar 

  • Moore, A. L., and Rich, P. R., 1980, The bioenergetics of plant mitochondria, Trends Biochem. Sci. 5:284–287.

    CAS  Google Scholar 

  • Mozaffar, S., Ueda, M., Kitatsuji, K., Shimizu, S., Osumi, M., and Tanaka, A., 1986, Properties of catalase purified from a methanol-grown yeast, Kloeckera sp. 2201, Eur. J. Biochem. 155:527–531.

    PubMed  CAS  Google Scholar 

  • Müller, R. H., Uhlenhut, G. J., and Babel, W., 1985, Flow of 14C-methanol via assimilatory and dissimilatory sequences with yeast in presence of glucose, Arch. Microbiol. 143:77–81.

    Google Scholar 

  • Nakase, T., and Komagata, K., 1970, Significance of DNA base composition in the classification of yeast genus Pichia, J. Gen. Appl. Microbiol. 16:511–521.

    Google Scholar 

  • Nakase, T., and Komagata, K., 1971a, Further investigation on the DNA base composition of the genus Hansenula, J. Gen. Appl. Microbiol. 17:77–84.

    Google Scholar 

  • Nakase, T., and Komagata, K., 1971b, Significance of DNA base composition in the classification of yeast genus Torulopsis, J. Gen. Appl. Microbiol. 17:161–166.

    Google Scholar 

  • Nakase, T., and Komagata, K., 1971c, Significance of DNA base composition in the classification of yeast genus Candida, J. Gen. Appl. Microbiol. 17:259–279.

    Google Scholar 

  • Nicolay, K., Veenhuis, M., Douma, A. C., and Harder, W., 1987, A 31P NMR study of the internal pH of yeast peroxisomes, Arch. Microbiol. 147:37–41.

    PubMed  CAS  Google Scholar 

  • Ogata, K., Nishikawa, H., and Ohsugi, M., 1969, A yeast capable of utilizing methanol, Agr. Biol. Chem. 33:1519–1520.

    CAS  Google Scholar 

  • Oki, T., Kouno, K., Kitai, A, and Ozaki, A, 1972, New yeasts capable of assimilating methanol, J. Gen. Appl. Microbiol. 18:295–305.

    CAS  Google Scholar 

  • Pal, H. S., and Hamdan, I. Y., 1979, Growth of a methanol-utilizing yeast, Enzyme Microbiol. Technol. 1:265–268.

    CAS  Google Scholar 

  • Patel, R. N., Hou, C. T., Laskin, A. I., Derelanko, P., and Felix, A, 1979, Oxidation of secondary alcohols to methyl ketones by yeasts, Appl. Environm. Microbiol. 38:219–223.

    CAS  Google Scholar 

  • Patel, R. N., Hou, C. T., Laskin, A. I., and Derelanko, P., 1981, Microbial production of methylketones: Properties of purified yeast secondary alcohol dehydrogenase, J. Appl. Biochem. 3:218–226.

    CAS  Google Scholar 

  • Phaff, H. J., and Starmer, W. T., 1987, Yeasts associated with plants, insects and soil, in: The Yeasts, Vol. 1, Biology of Yeasts (A. H. Rose and J. S. Harrison, eds.), Academic Press, London, pp. 123–180.

    Google Scholar 

  • Phaff, H. J., Miller, M. W., and Shifrine, M., 1956a, The taxonomy of yeasts isolated from Drosophila in the Yosemite region of California, Antonie van Leeuwenhoek 22:145–161.

    PubMed  CAS  Google Scholar 

  • Phaff, H. J., Miller, M. W., Recca, J. A., Shifrine, M., and Mrak, E. M., 1956b, Studies on the ecology of Drosophila in the Yosemite region of California. II. Yeasts found in the alimentary canal of Drosophila, Ecology 374:533–538.

    Google Scholar 

  • Roggenkamp, R., Sahm, H., and Wagner, F., 1974, Microbial assimilation of methanol, induction and function of catalase in Candida boidinii, FEBS Lett. 41:283–286.

    CAS  Google Scholar 

  • Roggenkamp, R., Hansen, H., Eckart, M., Janowicz, Z., and Hollenberg, C. P., 1986, Transformation of the methylotrophic yeast Hansenula polymorpha by autonomous replication and integration vectors, Mol. Gen. Genet. 202:302–308.

    CAS  Google Scholar 

  • Sahm, H., 1975, Oxidation of formaldehyde by alcohol oxidase of Candida boidinii, Arch. Microbiol. 105:179–181.

    CAS  Google Scholar 

  • Sahm, H., 1977, Metabolism of methanol by yeasts, Adv. Biochem. Eng. 6:77–103.

    CAS  Google Scholar 

  • Sakai, Y., and Tani, Y., 1986, Formaldehyde production by cells of a mutant of Candida boidinii S2 grown in methanol-limited chemostat culture, Agric. Biol. Chem. 50:2615–2620.

    CAS  Google Scholar 

  • Sakai, Y., and Tani, Y., 1987, Formaldehyde production with heat-treated cells of methanol yeast, J. Ferment. Technol. 65:489–491.

    CAS  Google Scholar 

  • Sakai, Y., Sawai, T., and Tani, Y., 1987, Isolation and characterization of a catabolite repression-insensitive mutant of a methanol yeast, Candida boidinii A5, producing alcohol oxidase in glucose-containing medium, Appl. Environm. Microbiol. 53:1812–1818.

    CAS  Google Scholar 

  • Sanchez, S., and Demain, A. L., 1978, Tryptophan excretion by a bradytroph of Hansenula polymorpha growing on methanol, Appl. Environm. Microbiol. 35:459–461.

    CAS  Google Scholar 

  • Savchenko, G. V., Kapul’tsevich, Y. G., Temina, A. V., and Nikitina, I. A., 1983, Hybridization of the asporogenic strains of Hansenula polymorpha by protoplast fusion, Microbiologiya 52:449–452.

    CAS  Google Scholar 

  • Schütte, H., Flossdorf, J., Sahm, H., and Kula, M. R. 1976, Purification and properties of formaldehyde dehydrogenase and formate dehydrogenase from Candida boidinii, Eur. J. Biochem. 62:151–160.

    Google Scholar 

  • Sherry, B., and Abeles, R. H., 1985, Mechanism of action of methanol oxidase, reconstitution of methanol oxidase with 5-deazaflavin, and inactivation of methanol oxidase by cyclopropanol, Biochemistry 24:2594–2605.

    PubMed  CAS  Google Scholar 

  • Shifrine, M., and Phaff, H. J., 1956, The association of yeasts with certain bark beetles, Mycologia 48:41–55.

    Google Scholar 

  • Sibirny, A. A., Titorenko, V. I., Benevolenskii, S. V., and Tolstorukov, I. I., 1986, Differences in the mechanisms of ethanol and glucose catabolite repression of the enzymes of methanol metabolism in the yeast Pichia pinus, Genetika 22:584–592.

    Google Scholar 

  • Sibirny, A. A., Titorenko, V. I., Efremov, B. D., and Tolstorukov, I. I., 1987, Multiplicity of mechanisms of carbon catabolite repression involved in the synthesis of alcohol oxidase in the methylotrophic yeast Pichia pinus, Yeast 3:233–241.

    Google Scholar 

  • Sibirny, A. A., Titorenko, V. I., Gonchar, M. V., Ubiyvovk, V. M., Ksheminskaya, G. P., and Vitvitskaya, O. P., 1988, Genetic control of methanol utilization in yeasts, J. Basic Microbiol. 28:293–319.

    PubMed  CAS  Google Scholar 

  • Sreekrishna, K., Potenz, R. H. B., Cruze, J. A., McCombie, W. R., Parker, K. A., Nelles, L., Mazzaferro, P. K., Holden, K. A., Harrison, R. G., Wood, P. J., Phelps, D. A., Hubbard, C. E., and Fuke, M., 1988, High level expression of heterologous proteins in methylotrophic yeast Pichia postons, J. Basic Microbiol. 28:265–278.

    CAS  Google Scholar 

  • Tani, Y., and Vongsuvanlert, V., 1987, Sorbitol production by a methanol yeast, Candida boidinii (Kloeckera sp.) no. 2201, J. Ferment. Technol. 65:405–411.

    CAS  Google Scholar 

  • Tani, Y., Mitani, Y., and Yamada, H., 1984a, ATP production by protoplasts of a methanol yeast, Candida boidinii (Kloeckera sp.) no. 2201, Agric. Biol. Chem. 48:431–437.

    CAS  Google Scholar 

  • Tani, Y., Mitani, Y., and Yamada, H., 1984b, Preparation of ATP-producing cells of a methanol yeast Candida boidinii (Kloeckera sp.) no. 2201, J. Ferment. Technol. 62:99–101.

    CAS  Google Scholar 

  • Tani, Y., Yonehara, Y., Mitani, Y., and Yamada, H., 1984c, ATP production by sorbitoltreated cells of a methanol yeast, Candida boidinii (Kloeckera sp.) no. 2201, J. Biotechnol. 1:119–127.

    CAS  Google Scholar 

  • Tani, Y., Sakai, Y., and Yamada, H., 1985a, Production of formaldehyde by a mutant of methanol yeast, Candida boidinii S2, J. Ferment. Technol. 63:443–449.

    CAS  Google Scholar 

  • Tani, Y., Sakai, Y., and Yamada, 1985b, Isolation and characterization of a mutant of a methanol yeast Candida boidinii S2, with higher formaldehyde productivity, Agric. Biol. Chem. 49:2699–2706.

    CAS  Google Scholar 

  • Tani, Y., Yonohara, T., Sakai, Y., and Yoon, B. D., 1987, Microbiological synthesis from C1-compounds: application of some methylotrophic functions to synthesis of useful chemicals, in: Microbial Growth on C 1 Compounds (H. W. van Verseveld and J. A. Duine, eds.), Martinus Nijhoff, Dordrecht, pp. 282–288.

    Google Scholar 

  • Thill, G., Davis, G., Stillmann, C., Tschopp, J. F., Graig, W. S., Velicelebi, G., Greff, J., Akong, M., Stroman, D., Torregrossa, R., and Siegel, R. S., 1987, The methylotrophic yeast Pichia pastoris as a host for heterologous protein production, in: Microbial Growth on C 1 Compounds (H. W. van Verseveld and J. A. Duine, eds.), Martinus Nijhoff, Dordrecht, pp. 289–296.

    Google Scholar 

  • Tikhomirova, L. P., Ikonomova, R. N., and Kuznetsova, E. N., 1986, Evidence for autonomous replication and stabilization of recombinant plasmids in the transformants of yeast Hansenula polymorpha, Curr. Genet. 10:741–747.

    CAS  Google Scholar 

  • Tikhomirova, L. P., Ikonomova, R. N., Kuznetsova, E. N., Fodor, I. I., Bystrykh, L. V., Aminova, L. R., and Trotsenko, Y. A., 1988, Transformation of methylotrophic yeast Hansenula polymorpha: Cloning and expression of genes, J. Basic Microbiol. 5:343–351.

    Google Scholar 

  • Tolstorukov, I. I., and Benevolenskii, S. V., 1980, Study of the mechanism of mating and self-diploidization in haploid yeasts Pichia pinus. II. Mutations in the mating type locus, Genetika 16:1335–1341.

    Google Scholar 

  • Tolstorukov, I. I., and Efremov, B. D., 1984, Genetic mapping of the yeast Pichia pinus. II. Mapping by tetrad analysis, Genetika 20:1099–1107.

    CAS  Google Scholar 

  • Tolstorukov, I. I., Dutova, T. A., Benevolenskii, S. V., and Soom, Y. O., 1977, Hybridization and genetic analysis of the methanol-utilizing yeasts Pichia pinus, Genetika 13:322–329.

    CAS  Google Scholar 

  • Tolstorukov, I. I., Efrimov, B. D., and Bliznik, K. M., 1983, Construction of a genetic map of the yeast Pichia pinus. I. Determination of linkage groups using induced mitotic haploidization, Genetika 19:897–902.

    Google Scholar 

  • Tolstorukov, I. I., Motruk, O. M., and Efrimov, B. D., 1988, Genetic control of alcohol oxidase activity in methylotrophic yeast Pichia pinus MH4, in: 14th Int. Conf. on Yeast Genetics and Molecular Biology, Wiley, London, p. 375.

    Google Scholar 

  • Trotsenko, Y. A., Bystrykh, L. V., and Ubiyvovk, V. M., 1984, Regulatory aspects of methanol metabolism in yeasts, in: Microbial growth on C 1 compounds (R. L. Crawford and R. S. Hanson, eds.), American Society for Microbiology, Washington, DC, pp. 118–122.

    Google Scholar 

  • Tschopp, J. F., Burst, P. F., Cregg, J. M., Stillman, C. A., and Gingeras, T. R., 1987a, Expression of the lacZ gene from two methanol-regulated promotors in Pichia pastoris, Nucl. Acids Res. 15:3859–3876.

    CAS  Google Scholar 

  • Tschopp, J. F., Sverlow, G., Kosson, R., Craig, W., and Grinna, L., 1987b, High-level secretion of glycosylated invertase in the methylotrophic yeast, Pichia pastoris, Bio/Technology 5:1305–1308.

    CAS  Google Scholar 

  • Ubiyvovk, V. M., Bystrykh, L. V., and Trotsenko, Y. A., 1983, Participation of glutathione in regulation of methanol metabolism in yeast, Mikrobiologiya 52:383–387.

    Google Scholar 

  • Uotila, L., and Koivusalo, M., 1974, Formaldehyde dehydrogenase from human liver. Purification, properties and evidence for the formation of glutathione thioesters by the enzyme, J. Biol. Chem. 249:7653–7663.

    PubMed  CAS  Google Scholar 

  • Veenhuis, M., and Harder, W., 1987, Metabolic significance and biogenesis of microbodies in yeasts, in: Peroxisomes in biology and medicine (H. D. Fahimi and H. Sies, eds.), Springer-Verlag, Berlin, Heidelberg, pp. 436–458.

    Google Scholar 

  • Veenhuis, M., Dijken, J. P. van, and Harder, W., 1983, The significance of peroxisomes in the metabolism of one-carbon compounds in yeasts, Adv. Microbial Physiol. 24:1–82.

    CAS  Google Scholar 

  • Verduyn, C., Giuseppin, M. L. F., Scheffers, W. A., Dijken, J. P. van, 1988, Hydrogen peroxide metabolism in yeasts, Appl. Environm. Microbiol. 54:2086–2090.

    CAS  Google Scholar 

  • Vongsuvanlert, V., and Tani, Y., 1988a, Characterization of D-sorbitol dehydrogenase involved in D-sorbitol production of a methanol yeast, Candida boidinii (Kloechera sp.) no. 2201, Agric. Biol. Chem. 52:419–426.

    CAS  Google Scholar 

  • Vongsuvanlert, V., and Tani, Y., 1988b, Purification and characterization of xylose isomerase of a methanol yeast, Candida boidinii, which is involved in sorbitol production from glucose, Agric. Biol. Chem. 52:1817–1824.

    CAS  Google Scholar 

  • Waites, M. J., and Quayle, J. R., 1980, Dihydroxyacetone: a product of xylulose 5-phosphate-dependent fixation of formaldehyde by methanol-grown Candida boidinii, J. Gen. Microbiol. 118:321–327.

    CAS  Google Scholar 

  • Waites, M. J., and Quayle, J. R., 1981, The interrelation between transketolase and dihydroxyacetone synthase activities in the methylotrophic yeast Candida boidinii, J. Gen. Microbiol. 124:309–316.

    CAS  Google Scholar 

  • Yamada, Y., Okada, T., Ueshima, O., and Kondo, K., 1973, Coenzyme Q system in the classification of the ascosporogenous yeast genera Hansenula and Pichia, J. Gen. Appl. Microbiol. 19:189–208.

    CAS  Google Scholar 

  • Yarrow, D., and Meyer, S. A., 1978, Proposal for amendment of the diagnosis of the genus Candida Berkhout nom. cons., Int. J. Syst. Bacteriol. 28:611–615.

    Google Scholar 

  • Yasuhara, S., Kawamoto, S., Tanaka, A., Osumi, M., and Fukui, S., 1976, Induction of catalase activity in a methanol-utilizing yeast, Kloeckera sp. no. 2201, Agr. Biol. Chem. 40:1771–1780.

    CAS  Google Scholar 

  • Yonehara, T., and Tani, Y., 1987, Highly efficient production of ATP by a methanol yeast, Candida boidinii (Kloeckera sp.) no. 2201, J. Ferment. Technol. 65:255–260.

    CAS  Google Scholar 

  • Zwart, K. B., and Harder, W., 1983, Regulation of the metabolism of some alkylated amines in the yeasts Candida utilis and Hansenula polymorpha, J. Gen. Microbiol. 129:3157–3169.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Koning, W., Harder, W. (1992). Methanol-Utilizing Yeasts. In: Murrell, J.C., Dalton, H. (eds) Methane and Methanol Utilizers. Biotechnology Handbooks, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2338-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2338-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2340-0

  • Online ISBN: 978-1-4899-2338-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics