Methanol-Utilizing Yeasts

  • W. de Koning
  • W. Harder
Part of the Biotechnology Handbooks book series (BTHA, volume 5)

Abstract

The ability of yeasts to grow on methanol as a source of carbon and energy has been discovered relatively recently. Whereas bacterial utilization of methanol was found before the end of the previous century, it was not until 1969 that growth of eukaryotic microorganisms at the expense of this one-carbon compound was reported (Ogata et al. 1969). Independent studies by several other research groups soon followed this first report and established that a variety of yeasts (Lee and Komagata, 1980a) and some filamentous fungi (Goncharova et al., 1977) are able to utilize methanol as a source of carbon and energy for growth.

Keywords

Glutathione Lignin Adenosine Cytosol Bark 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allais, J. J., Louktibi, A., and Baratti, J., 1983a, Oxidation of methanol by the yeast, Pichia pastoris, purification and properties of the formaldehyde dehydrogenase, Agric. Biol. Chem. 47:1509–1516.Google Scholar
  2. Allais, J. J., Louktibi, A., and Baratti, J., 1983b, Oxidation of methanol by the yeast Pichia pastoris. Purification and properties of the formate dehydrogenases, Agric. Biol. Chem. 47:2547–2554.Google Scholar
  3. Anthony, C., 1982, Biochemistry of Methylotrophs, Academic Press, London.Google Scholar
  4. Anthony, C., and Jones, C. W., 1987, Energy metabolism of aerobic, methylotrophic bacteria, in: Microbial Growth on C 1 Compounds (H. W. van Verseveld and J. A. Duine, eds.), Martinus Nijhoff, Dordrecht, pp. 195–202.Google Scholar
  5. Attwood, M. M., and Dijken, J. P. van, 1982, Characteristics of fructose-1,6-bisphosphatase from the methanol-utilizing yeast Hansenula polymorpha, J. Gen. Microbiol. 128:2313–2317.Google Scholar
  6. Baratti, J., Couderc, R., Cooney, C. L., and Wang, D. I. C., 1978, Preparation and properties of immobilized methanol oxidase, Biotechnol. Bioeng. 20:333–348.Google Scholar
  7. Benevolenskii, S. V., and Tolstorukov, I. I., 1980, Study of the mechanisms of mating and self-diploidization in haploid yeasts Pichia pinus. III. Study of heterothallic mutants, Genetiha 16:1342–1349.Google Scholar
  8. Bieber, R., and Trümpier, G., 1947, Angenäherte spektrographische Bestimmung der Hydratationsgleichgewichtskonstanten wäßriger Formaldehydlösungen, Helv. Chim. Acta 30:1860–1865.Google Scholar
  9. Bodunova, E. N., Donich, V. N., Nesterova, G. F., and Soom, Y. O., 1986a, Genetic lines of Hansenula polymorpha yeast. Communication I. Preparation and characterization of genetic lines, Genetika 22:741–747.Google Scholar
  10. Bodunova, E. N., Donich, V. N., and Nesterova, G. F., 1986b, Genetic lines of Hansenula polymorpha yeast. II. Inheritance of abnormalities in meiotic segregation, Genetika 22:939–950.Google Scholar
  11. Borst, P., 1989, Peroxisome biogenesis revisited, Biochim. Biophys. Acta 1008:1–13.PubMedGoogle Scholar
  12. Brooke, A. G., Dijkhuizen, L., and Harder, W., 1986, Regulation of flavin biosynthesis in the methylotrophic yeast Hansenula polymorpha, Arch. Microbiol. 145:62–70.Google Scholar
  13. Bystrykh, L. V., 1985, Kinetic properties of dihydroxyacetone kinase of the methylotrophic yeast Candida boidinii, Biochemistry (USSR). 40:1611–1616.Google Scholar
  14. Bystrykh, L. V., Sokolov, A. P., and Trotsenko, Y. A., 1981, Purification and properties of dihydroxyacetone synthase from the methylotrophic yeast Candida boidinii, FEBS Lett. 132:324–328.Google Scholar
  15. Bystrykh, L. V., Aminova, L. R., and Trotsenko, Y. A., 1988, Methanol metabolism in mutants of the methylotrophic yeast Hansenula polymorpha, FEMS Microbiol. Lett. 51:89–94.Google Scholar
  16. Bystrykh, L. V., Romanov, V. P., Steczko, J., and Trotsenko, Y. A., 1989, Catalytic variability of alcohol oxidase from the methylotrophic yeast Hansenula polymorpha, Biotechnol. Appl. Biochem. 11:184–192.Google Scholar
  17. Campbell, I., 1973, Numerical analysis of Hansenula, Pichia and related yeast genera, J. Gen. Microbiol. 77:427–441.Google Scholar
  18. Couderc, R., and Baratti, J., 1980, Oxidation of methanol by the yeast, Pichia pastoris. Purification and properties of the alcohol oxidase, Agric. Biol. Chem. 44:2279–2289.Google Scholar
  19. Cregg, J. M., 1987, Genetics of methylotrophic yeasts, in: Microbial Growth on C 1 Compounds (H. W. van Verseveld and J. A. Duine, eds.), Martinus Nijhoff, Dordrecht, pp. 158–167.Google Scholar
  20. Cregg, J. M., Barringer, K. J., Hessler, A. Y., and Madden, K. R., 1985, Pichia pastoris as a host system for transformations, Mol. Cell. Biol. 5:3376–3385.PubMedGoogle Scholar
  21. Cregg, J. M., Tschopp, J. F., Stillman, C., Siegel, R., Akong, M., Craig, W. S., Buckholz, R. G., Madden, K. R., Kellaris, P. A., Davis, G. R., Smiley, B. L., Cruze, J., Torregrossa, R., Velicelebi, G., and Thill, G. P., 1987, High-level expression and efficient assembly of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris, Bio/Technology 5:479–485.Google Scholar
  22. Cregg, J. M., Madden, K. R., Barringer, K. J., Thill, G. P., and Stillman, C. A., 1989, Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris, Mol. Cell. Biol. 9:1315–1323.Google Scholar
  23. Denenu, E. O., and Demain, A. L., 1981a, Enzymatic basis for overproduction of tryptophan and its metabolites in Hansenula polymorpha mutants, Appl. Environm. Microbiol. 42:497–501.Google Scholar
  24. Denenu, E. O., and Demain, A. L., 1981b, Relationship between genetic deregulation of Hansenula polymorpha and production of tryptophan metabolites, Eur. J. Appl. Microbiol. Biotechnol. 13:202–207.Google Scholar
  25. Digan, M. E., and Lair, S. V., 1986, Genetic methods for the methylotrophic yeast Pichia pastoris, Thirteenth International Conference on Yeast Genetics and Molecular biology, Banff, Alberta, Canada, Book of abstracts, p. 589.Google Scholar
  26. Dijken, J. P. van, and Harder, W., 1974, Optimal conditions for the enrichment and isolation of methanol-assimilating yeasts, J. Gen. Mkrobiol. 84:409–411.Google Scholar
  27. Dijken, J. P. van, Otto, R., and Harder, W., 1976, Growth of Hansenula polymorpha in a methanol-limited chemostat. Physiological responses due to the involvement of methanol oxidase as a key enzyme in methanol metabolism, Arch. Microbiol. 111:137–144.PubMedGoogle Scholar
  28. Dijken, J. P. van, Harder, W., Beardsmore, A. J., and Quayle, J. R., 1978, Dihydroxyacetone: an intermediate in the assimilation of methanol by yeasts? FEMS Mkrobiol. Lett. 4:97–102.Google Scholar
  29. Dijken, J. P. van, Harder, W., and Quayle, J. R., 1981, Energy transduction and carbon assimilation in methylotrophic yeasts, in: Microbial Growth on C 1 Compounds (H. Dalton, ed.), Heyden, London, pp. 191–201.Google Scholar
  30. Dijkhuizen, L., Hansen, T. A., and Harder, W., 1985, Methanol, a potential feedstock for biotechnological processes, Trends Biotechnol. 3:262–267.Google Scholar
  31. Douma, A. C., Veenhuis, M., de Koning, W., Evers, M., and Harder, W., 1985, Dihydroxyacetone synthase is localized in the peroxisomal matrix of methanol-grown Hansenula polymorpha, Arch. Microbiol. 143:237–243.Google Scholar
  32. Douma, A. C., Veenhuis, M., Suiter, G. J., and Harder, W., 1987, A proton-translocating adenosine triphosphatase is associated with the peroxisomal membrane of yeasts, Arch. Microbiol. 147:42–47.PubMedGoogle Scholar
  33. Douma, A. C., Veenhuis, M., Waterham, H. R., and Harder, W., 1990, Immunological demonstration of the peroxisomal ATPase of yeasts, Yeast 6:45–52.PubMedGoogle Scholar
  34. Eggeling, L., and Sahm, H., 1978, Derepression and partial insensitivity to carbon catabolite repression of the methanol dissimilating enzymes in Hansenula polymorpha, Eur. J. Appl. Microbiol. Biotechnol. 5:197–202.Google Scholar
  35. Eggeling, L., and Sahm, H., 1980, Regulation of alcohol oxidase synthesis in Hansenula polymorpha: oversynthesis during growth on mixed substrates and induction by methanol, Arch. Microbiol. 127:119–124.PubMedGoogle Scholar
  36. Eggeling, L., and Sahm, H., 1981, Enhanced utilization-rate of methanol during growth on a mixed substrate: a continuous culture study with Hansenula polymorpha, Arch. Microbiol. 130:362–124.Google Scholar
  37. Egli, T., 1982, Regulation of protein synthesis in methylotrophic yeasts: Repression of methanol dissimilating enzymes by nitrogen limitation, Arch. Mkrobiol. 131:95–101.Google Scholar
  38. Egli, T., and Harder, W., 1984, Growth of methylotrophs on mixed substrates, in: Microbial Growth on C 1 Compounds (R. L. Crawford and R. S. Hanson, eds.), American Society for Microbiology, Washington, DC, pp. 330–337.Google Scholar
  39. Egli, T., and Lindley, N. D., 1984, Mitochondrial activities in the methylotrophic yeast Kloeckera sp. 2201 during growth with glucose and/or methanol, J. Gen. Mkrobiol. 130:3239–3249.Google Scholar
  40. Egli, T., Dijken, J. P. van, Veenhuis, M., Harder, W., and Fiechter, A., 1980, Methanol metabolism in yeasts: regulation of the synthesis of catabolic enzymes, Arch. Microbiol. 124:115–121.Google Scholar
  41. Egli, T., Käppeli, O., and Fiechter, A., 1982a, Regulatory flexibility of methylotrophic yeasts in chemostat cultures: Simultaneous assimilation of glucose and methanol at a fixed dilution rate, Arch. Microbiol. 131:1–7.Google Scholar
  42. Egli, T., Käppeli, O., and Fiechter, A., 1982b, Mixed substrate growth of methylotrophic yeasts in chemostat culture: Influence of the dilution rate on the utilization of a mixture of glucose and methanol, Arch. Microbiol. 131:8–13.Google Scholar
  43. Egli, T., Haltmaier, T., and Fiechter, A., 1982c, Regulation of the synthesis of methanol oxidizing enzymes in Kloeckera sp. 2201 and Hansenula polymorpha, a comparison, Arch. Microbiol. 131:174–175.Google Scholar
  44. Egli, T., Lindley, N. D., and Quayle, J. R., 1983, Regulation of enzyme synthesis and variation of residual methanol concentration during carbon-limited growth of Kloeckera sp. 2201 on mixtures of methanol and glucose, J. Gen. Microbiol. 129:1269–1281.Google Scholar
  45. Egli, T., Bosshard, C., and Hamer, G., 1986, Simultaneous utilization of methanol-glucose mixtures by Hansenula polymorpha in chemostat: influence of dilution rate and mixture composition on utilization pattern, Biotechnol. Bioeng. 28:1735–1741.PubMedGoogle Scholar
  46. Fujii, T., and Tonomura, K., 1972, Oxidation of methanol, formaldehyde and formate by a Candida species, Agric. Biol. Chem. 36:2297–2306.Google Scholar
  47. Fujii, T., Yamamoto, H., Takenaka, E., Fujinami, K., Ando, A., and Yabuki, M., 1988, Intraspecific hybridization of a methanol-utilizing yeast, Candida sp. N-16, through protoplast fusion, Agric. Biol. Chem. 52:1661–1667.Google Scholar
  48. Giuseppin, M. L. F., 1988, Optimization of methanol oxidase production by Hansenula polymorpha: an applied study on physiology and fermentation, Ph.D. thesis, Technical University of Delft, The Netherlands.Google Scholar
  49. Giuseppin, M. L. F., van Eijk, H. M. J., Verduyn, C., Bante, I., and van Dijken, J. P., 1988a, Production of catalase-free methanol oxidase (MOX) by Hansenula polymorpha, Appl. Microbiol. Biotechnol. 28:14–19.Google Scholar
  50. Giuseppin, M. L. F., van Eijk, H. M. J., and Bes, B. C. M., 1988b, Molecular regulation of methanol oxidase activity in continuous cultures of Hansenula polymorpha, Biotechnol. Bioeng. 32:577–583.Google Scholar
  51. Giuseppin, M. L. F., van Eijk, H. M. J., Bos, A., Verduyn, C., and van Dijken, J. P., 1988c, Utilization of methanol by a catalase-negative mutant of Hansenula polymorpha, Appl. Microbiol. Biotechnol. 28:286–292.Google Scholar
  52. Gleeson, M. A., 1986, The genetic analysis of the methylotrophic yeast Hansenula polymorpha, Ph.D. thesis, University of Sheffield, U.K.Google Scholar
  53. Gleeson, M. A., and Sudbery, P. E., 1988a, The methylotrophic yeasts, Yeast 4:1–15.Google Scholar
  54. Gleeson, M. A., and Sudbery, P. E., 1988b, Genetic analysis in the methylotrophic yeast Hansenula polymorpha, Yeast 4:293–303.Google Scholar
  55. Gleeson, M. A., Waites, M. J., and Sudbery, P. E., 1984, Development of techniques for genetic analysis in the methylotrophic yeast Hansenula polymorpha, in: Microbial Growth on C 1 Compounds (R. L. Crawford and R. S. Hanson, eds.), American Society for Microbiology, Washington, DC, pp. 228–243.Google Scholar
  56. Gleeson, M. A., Ortori, G. S., and Sudbery, P. E., 1986, Transformation of the methylotrophic yeast Hansenula polymorpha, J. Gen. Microbiol. 132:3459–3465.Google Scholar
  57. Goncharova, I. A., Babitskaya, V. G., and Lobanok, A. G., 1977, Growth and formation of protein biomass by fungi Trichoderma and Penicillium on methanol, in: Microbial Growth on C 1 Compounds (G. K. Skryabin, M. V. Ivanov, E. N. Kondratjeva, G. A. Zavarzin, Y. A. Trotsenko, and A. I. Nesterov, eds.), USSR Academy of Sciences, Moscow, pp. 187.Google Scholar
  58. Goodman, J. M., 1985, Dihydroxyacetone synthase is an abundant constituent of the methanol-induced peroxisome of Candida boidinii, J. Biol. Chem. 260:7108–7113.Google Scholar
  59. Harder, W., Trotsenko, Y. A., Bystrykh, L. V., and Egli, T., 1987, Metabolic regulation in methylotrophic yeasts, in: Microbial Growth on C 1 Compounds (H. W. van Verseveld and J. A. Duine, eds.), Martinus Nijhoff, Dordrecht, pp. 139–149.Google Scholar
  60. Hazeu, W., de Bruin, J. C., and Bos, P., 1972, Methanol assimilation by yeasts, Arch. Mikrobiol. 87:185–188.PubMedGoogle Scholar
  61. Hopkins, T. R., and Muller, F., 1987, Biochemistry of alcohol oxidase, in: Microbial Growth on C 1 Compounds (H. W. van Verseveld and J. A. Duine, eds.), Martinus Nijhoff, Dordrecht, pp. 150–157.Google Scholar
  62. Janowicz, Z. A., Eckart, M. R., Drewke, C., Roggenkamp, R. O., Hollenberg, C. P., Maat, J., Ledeboer, A. M., Visser, C., and Verrips, C. T., 1985, Cloning and characterization of the DAS gene encoding the major methanol assimilatory enzyme from the methylotrophic yeast Hansenula polymorpha, Nucl. Acids Res, 13:3043–3062.Google Scholar
  63. Kato, K., Kurimura, Y., Makiguchi, N., and Asai, Y., 1974, Determination of methanol strongly assimilating yeasts, J. Gen. Appl. Microbiol. 20:123–127.Google Scholar
  64. Kato, N., Omory, Y., Tani, Y., and Ogata, K., 1976, Alcohol oxidases of Kloeckera sp. and Hansenula polymorpha, Catalytic properties and subunit structures, Eur. J. Biochem. 64:341–350.PubMedGoogle Scholar
  65. Kato, N., Nishizawa, T., Sakazawa, C., Tani, Y., and Yamada, H., 1979, Xylulose 5-phosphate dependent fixation of formaldehyde in a methanol-utilizing yeast Kloeckera sp. no. 2201, Agric. Biol. Chem. 43:2013–2015.Google Scholar
  66. Kato, N., Higuchi, T., Sakazawa, C., Nishizawa, T., Tani, Y., and Yamada, H., 1982, Purification and properties of a transketolase responsible for formaldehyde fixation in a methanol-utilizing yeast, Candida boidinii (Kloeckera sp.) no. 2201, Biochim. Biophys. Acta 715:143–150.PubMedGoogle Scholar
  67. Kato, N., Kobayashi, H., Shimao, M., and Sakazawa, C., 1986, Dihydroxyacetone production from methanol by a dihydroxyacetone kinase deficient mutant of Hansenula polymorpha, Appl. Microbiol. Biotechnol. 23:180–186.Google Scholar
  68. Komagata, K., 1981, Taxonomic studies of methanol-utilizing yeasts, in: Microbial Growth on C 1 Compounds (H. Dalton, ed.), Heyden, London, pp. 301–311.Google Scholar
  69. Koning, W. de, Gleeson, M. A G., Harder, W., and Dijkhuizen, L., 1987a, Regulation of methanol metabolism in the yeast Hansenula polymorpha: isolation and characterization of mutants blocked in methanol assimilatory enzymes, Arch. Microbiol. 147:375–382.Google Scholar
  70. Koning, W. de, Harder, W., and Dijkhuizen, L., 1987b, Glycerol metabolism in the methylotrophic yeast Hansenula polymorpha: phosphorylation as the initial step, Arch. Microbiol. 148:314–320.Google Scholar
  71. Koning, W. de, Bonting, K., Harder, W., and Dijkhuizen, L., 1990a, Classical transketolase functions as the formaldehyde-assimilating enzyme during growth of a dihydroxyacetone synthase-negative mutant of the methylotrophic yeast Hansenula polymorpha on mixtures of xylose and methanol in continuous cultures, Yeast 6:117–125.Google Scholar
  72. Koning, W. de, Weusthuis, R. A., Harder, W., and Dijkhuizen, L., 1990b, Methanol-dependent production of dihydroxyacetone and glycerol by mutants of the methylotrophic yeast Hansenula polymorpha blocked in dihydroxyacetone kinase and glycerol kinase, Appl. Microbiol. Biotechnol. 32:693–698.Google Scholar
  73. Kregervan Rij, N. J. W. (ed.), 1984, The Yeasts, Elsevier, Amsterdam.Google Scholar
  74. Kurzman, C. P., 1984, Synonomy of the yeast genera Hansenula and Pichia demonstrated through comparisons of deoxyribonucleic acid relatedness, Antonie van Leeuwenhoek 50:209–217.Google Scholar
  75. Kurzman, C. P., and Phaff, H. J., 1987, Molecular Taxonomy, in: The Yeasts, Vol. 1, Biology of Yeasts (A. H. Rose and J. S. Harrison, eds.), Academic Press, London, pp. 63–94.Google Scholar
  76. Kurzman, C. P., Smiley, M. J., and Johnson, C. J., 1980a, Emendation of the genus Issatchenkia Kudriavzev and comparison of species by deoxyribonucleic acid reassociation, mating reaction, and ascospore ultrastructure, Int. J. Syst. Bacteriol. 30:503–513.Google Scholar
  77. Kurzman, C. P., Smiley, M. J., Johnson, C. J., Wickerham, L. J., and Fuson, G. B., 1980b, Two new and closely related heterothallic species, Pichia amylophila and Pichia mississippiensis: characterization by hybridization and deoxyribonucleic acid reassociation, Int. J. Syst. Bacteriol. 30:208–216.Google Scholar
  78. Lahtchev, K., and Tuneva, D., 1986, Mitotic segregation in hybrid of methylotrophic yeast Candida pelliculosa, Curr. Microbiol. 14:121–125.Google Scholar
  79. Ledeboer, A. M., Edens, L., Maat, J., Visser, C., Bos, J. W., Verrips, C. T., Janowicz, Z., Eckart, M., Roggenkamp, R., and Hollenberg, C. P., 1985, Molecular cloning and characterization of a gene coding for alcohol oxidase in Hansenula polymorpha, Nucl. Acids Res. 13:3063–3082.Google Scholar
  80. Lee, J. D., and Komagata, K., 1980a, Taxonomic study of methanol-assimilating yeasts, J. Gen. Appl. Microbiol. 26:133–158.Google Scholar
  81. Lee, J. D., and Komagata, K., 1980b, Pichia cellobiosa, Candida cariosilignicola and Candida succiphila, new species of methanol-assimilating yeasts, Int. J. Syst. Bacteriol. 30:514–519.Google Scholar
  82. Lee, J. D., and Komagata, K., 1983, Further taxonomic study of methanol-assimilating yeasts with special references to electrophoretic comparison of enzymes, J. Gen. Appl. Microbiol. 29:395–416.Google Scholar
  83. Levine, D. W., and Cooney, C. L., 1973, Isolation and characterization of a thermotolerant methanol-utilizing yeast, Appl. Microbiol. 26:982–990.PubMedGoogle Scholar
  84. Linton, J. D., and Niekus, H. G. D., 1987, The potential of one-carbon compounds as fermentation feedstocks, in: Microbial Growth on C 1 Compounds (H. W. van Verseveld and J. A. Duine, eds.), Martinus Nijhoff, Dordrecht, pp. 263–271.Google Scholar
  85. Miller, M. W., Phaff, H. J., Miranda, M., Heed, W. B., and Starmer, W. T., 1976, Torulopsis sonorensis, a new species of the genus Torulopsis, Int. J. Syst. Bacteriol. 26:88–91.Google Scholar
  86. Moore, A. L., and Rich, P. R., 1980, The bioenergetics of plant mitochondria, Trends Biochem. Sci. 5:284–287.Google Scholar
  87. Mozaffar, S., Ueda, M., Kitatsuji, K., Shimizu, S., Osumi, M., and Tanaka, A., 1986, Properties of catalase purified from a methanol-grown yeast, Kloeckera sp. 2201, Eur. J. Biochem. 155:527–531.PubMedGoogle Scholar
  88. Müller, R. H., Uhlenhut, G. J., and Babel, W., 1985, Flow of 14C-methanol via assimilatory and dissimilatory sequences with yeast in presence of glucose, Arch. Microbiol. 143:77–81.Google Scholar
  89. Nakase, T., and Komagata, K., 1970, Significance of DNA base composition in the classification of yeast genus Pichia, J. Gen. Appl. Microbiol. 16:511–521.Google Scholar
  90. Nakase, T., and Komagata, K., 1971a, Further investigation on the DNA base composition of the genus Hansenula, J. Gen. Appl. Microbiol. 17:77–84.Google Scholar
  91. Nakase, T., and Komagata, K., 1971b, Significance of DNA base composition in the classification of yeast genus Torulopsis, J. Gen. Appl. Microbiol. 17:161–166.Google Scholar
  92. Nakase, T., and Komagata, K., 1971c, Significance of DNA base composition in the classification of yeast genus Candida, J. Gen. Appl. Microbiol. 17:259–279.Google Scholar
  93. Nicolay, K., Veenhuis, M., Douma, A. C., and Harder, W., 1987, A 31P NMR study of the internal pH of yeast peroxisomes, Arch. Microbiol. 147:37–41.PubMedGoogle Scholar
  94. Ogata, K., Nishikawa, H., and Ohsugi, M., 1969, A yeast capable of utilizing methanol, Agr. Biol. Chem. 33:1519–1520.Google Scholar
  95. Oki, T., Kouno, K., Kitai, A, and Ozaki, A, 1972, New yeasts capable of assimilating methanol, J. Gen. Appl. Microbiol. 18:295–305.Google Scholar
  96. Pal, H. S., and Hamdan, I. Y., 1979, Growth of a methanol-utilizing yeast, Enzyme Microbiol. Technol. 1:265–268.Google Scholar
  97. Patel, R. N., Hou, C. T., Laskin, A. I., Derelanko, P., and Felix, A, 1979, Oxidation of secondary alcohols to methyl ketones by yeasts, Appl. Environm. Microbiol. 38:219–223.Google Scholar
  98. Patel, R. N., Hou, C. T., Laskin, A. I., and Derelanko, P., 1981, Microbial production of methylketones: Properties of purified yeast secondary alcohol dehydrogenase, J. Appl. Biochem. 3:218–226.Google Scholar
  99. Phaff, H. J., and Starmer, W. T., 1987, Yeasts associated with plants, insects and soil, in: The Yeasts, Vol. 1, Biology of Yeasts (A. H. Rose and J. S. Harrison, eds.), Academic Press, London, pp. 123–180.Google Scholar
  100. Phaff, H. J., Miller, M. W., and Shifrine, M., 1956a, The taxonomy of yeasts isolated from Drosophila in the Yosemite region of California, Antonie van Leeuwenhoek 22:145–161.PubMedGoogle Scholar
  101. Phaff, H. J., Miller, M. W., Recca, J. A., Shifrine, M., and Mrak, E. M., 1956b, Studies on the ecology of Drosophila in the Yosemite region of California. II. Yeasts found in the alimentary canal of Drosophila, Ecology 374:533–538.Google Scholar
  102. Roggenkamp, R., Sahm, H., and Wagner, F., 1974, Microbial assimilation of methanol, induction and function of catalase in Candida boidinii, FEBS Lett. 41:283–286.Google Scholar
  103. Roggenkamp, R., Hansen, H., Eckart, M., Janowicz, Z., and Hollenberg, C. P., 1986, Transformation of the methylotrophic yeast Hansenula polymorpha by autonomous replication and integration vectors, Mol. Gen. Genet. 202:302–308.Google Scholar
  104. Sahm, H., 1975, Oxidation of formaldehyde by alcohol oxidase of Candida boidinii, Arch. Microbiol. 105:179–181.Google Scholar
  105. Sahm, H., 1977, Metabolism of methanol by yeasts, Adv. Biochem. Eng. 6:77–103.Google Scholar
  106. Sakai, Y., and Tani, Y., 1986, Formaldehyde production by cells of a mutant of Candida boidinii S2 grown in methanol-limited chemostat culture, Agric. Biol. Chem. 50:2615–2620.Google Scholar
  107. Sakai, Y., and Tani, Y., 1987, Formaldehyde production with heat-treated cells of methanol yeast, J. Ferment. Technol. 65:489–491.Google Scholar
  108. Sakai, Y., Sawai, T., and Tani, Y., 1987, Isolation and characterization of a catabolite repression-insensitive mutant of a methanol yeast, Candida boidinii A5, producing alcohol oxidase in glucose-containing medium, Appl. Environm. Microbiol. 53:1812–1818.Google Scholar
  109. Sanchez, S., and Demain, A. L., 1978, Tryptophan excretion by a bradytroph of Hansenula polymorpha growing on methanol, Appl. Environm. Microbiol. 35:459–461.Google Scholar
  110. Savchenko, G. V., Kapul’tsevich, Y. G., Temina, A. V., and Nikitina, I. A., 1983, Hybridization of the asporogenic strains of Hansenula polymorpha by protoplast fusion, Microbiologiya 52:449–452.Google Scholar
  111. Schütte, H., Flossdorf, J., Sahm, H., and Kula, M. R. 1976, Purification and properties of formaldehyde dehydrogenase and formate dehydrogenase from Candida boidinii, Eur. J. Biochem. 62:151–160.Google Scholar
  112. Sherry, B., and Abeles, R. H., 1985, Mechanism of action of methanol oxidase, reconstitution of methanol oxidase with 5-deazaflavin, and inactivation of methanol oxidase by cyclopropanol, Biochemistry 24:2594–2605.PubMedGoogle Scholar
  113. Shifrine, M., and Phaff, H. J., 1956, The association of yeasts with certain bark beetles, Mycologia 48:41–55.Google Scholar
  114. Sibirny, A. A., Titorenko, V. I., Benevolenskii, S. V., and Tolstorukov, I. I., 1986, Differences in the mechanisms of ethanol and glucose catabolite repression of the enzymes of methanol metabolism in the yeast Pichia pinus, Genetika 22:584–592.Google Scholar
  115. Sibirny, A. A., Titorenko, V. I., Efremov, B. D., and Tolstorukov, I. I., 1987, Multiplicity of mechanisms of carbon catabolite repression involved in the synthesis of alcohol oxidase in the methylotrophic yeast Pichia pinus, Yeast 3:233–241.Google Scholar
  116. Sibirny, A. A., Titorenko, V. I., Gonchar, M. V., Ubiyvovk, V. M., Ksheminskaya, G. P., and Vitvitskaya, O. P., 1988, Genetic control of methanol utilization in yeasts, J. Basic Microbiol. 28:293–319.PubMedGoogle Scholar
  117. Sreekrishna, K., Potenz, R. H. B., Cruze, J. A., McCombie, W. R., Parker, K. A., Nelles, L., Mazzaferro, P. K., Holden, K. A., Harrison, R. G., Wood, P. J., Phelps, D. A., Hubbard, C. E., and Fuke, M., 1988, High level expression of heterologous proteins in methylotrophic yeast Pichia postons, J. Basic Microbiol. 28:265–278.Google Scholar
  118. Tani, Y., and Vongsuvanlert, V., 1987, Sorbitol production by a methanol yeast, Candida boidinii (Kloeckera sp.) no. 2201, J. Ferment. Technol. 65:405–411.Google Scholar
  119. Tani, Y., Mitani, Y., and Yamada, H., 1984a, ATP production by protoplasts of a methanol yeast, Candida boidinii (Kloeckera sp.) no. 2201, Agric. Biol. Chem. 48:431–437.Google Scholar
  120. Tani, Y., Mitani, Y., and Yamada, H., 1984b, Preparation of ATP-producing cells of a methanol yeast Candida boidinii (Kloeckera sp.) no. 2201, J. Ferment. Technol. 62:99–101.Google Scholar
  121. Tani, Y., Yonehara, Y., Mitani, Y., and Yamada, H., 1984c, ATP production by sorbitoltreated cells of a methanol yeast, Candida boidinii (Kloeckera sp.) no. 2201, J. Biotechnol. 1:119–127.Google Scholar
  122. Tani, Y., Sakai, Y., and Yamada, H., 1985a, Production of formaldehyde by a mutant of methanol yeast, Candida boidinii S2, J. Ferment. Technol. 63:443–449.Google Scholar
  123. Tani, Y., Sakai, Y., and Yamada, 1985b, Isolation and characterization of a mutant of a methanol yeast Candida boidinii S2, with higher formaldehyde productivity, Agric. Biol. Chem. 49:2699–2706.Google Scholar
  124. Tani, Y., Yonohara, T., Sakai, Y., and Yoon, B. D., 1987, Microbiological synthesis from C1-compounds: application of some methylotrophic functions to synthesis of useful chemicals, in: Microbial Growth on C 1 Compounds (H. W. van Verseveld and J. A. Duine, eds.), Martinus Nijhoff, Dordrecht, pp. 282–288.Google Scholar
  125. Thill, G., Davis, G., Stillmann, C., Tschopp, J. F., Graig, W. S., Velicelebi, G., Greff, J., Akong, M., Stroman, D., Torregrossa, R., and Siegel, R. S., 1987, The methylotrophic yeast Pichia pastoris as a host for heterologous protein production, in: Microbial Growth on C 1 Compounds (H. W. van Verseveld and J. A. Duine, eds.), Martinus Nijhoff, Dordrecht, pp. 289–296.Google Scholar
  126. Tikhomirova, L. P., Ikonomova, R. N., and Kuznetsova, E. N., 1986, Evidence for autonomous replication and stabilization of recombinant plasmids in the transformants of yeast Hansenula polymorpha, Curr. Genet. 10:741–747.Google Scholar
  127. Tikhomirova, L. P., Ikonomova, R. N., Kuznetsova, E. N., Fodor, I. I., Bystrykh, L. V., Aminova, L. R., and Trotsenko, Y. A., 1988, Transformation of methylotrophic yeast Hansenula polymorpha: Cloning and expression of genes, J. Basic Microbiol. 5:343–351.Google Scholar
  128. Tolstorukov, I. I., and Benevolenskii, S. V., 1980, Study of the mechanism of mating and self-diploidization in haploid yeasts Pichia pinus. II. Mutations in the mating type locus, Genetika 16:1335–1341.Google Scholar
  129. Tolstorukov, I. I., and Efremov, B. D., 1984, Genetic mapping of the yeast Pichia pinus. II. Mapping by tetrad analysis, Genetika 20:1099–1107.Google Scholar
  130. Tolstorukov, I. I., Dutova, T. A., Benevolenskii, S. V., and Soom, Y. O., 1977, Hybridization and genetic analysis of the methanol-utilizing yeasts Pichia pinus, Genetika 13:322–329.Google Scholar
  131. Tolstorukov, I. I., Efrimov, B. D., and Bliznik, K. M., 1983, Construction of a genetic map of the yeast Pichia pinus. I. Determination of linkage groups using induced mitotic haploidization, Genetika 19:897–902.Google Scholar
  132. Tolstorukov, I. I., Motruk, O. M., and Efrimov, B. D., 1988, Genetic control of alcohol oxidase activity in methylotrophic yeast Pichia pinus MH4, in: 14th Int. Conf. on Yeast Genetics and Molecular Biology, Wiley, London, p. 375.Google Scholar
  133. Trotsenko, Y. A., Bystrykh, L. V., and Ubiyvovk, V. M., 1984, Regulatory aspects of methanol metabolism in yeasts, in: Microbial growth on C 1 compounds (R. L. Crawford and R. S. Hanson, eds.), American Society for Microbiology, Washington, DC, pp. 118–122.Google Scholar
  134. Tschopp, J. F., Burst, P. F., Cregg, J. M., Stillman, C. A., and Gingeras, T. R., 1987a, Expression of the lacZ gene from two methanol-regulated promotors in Pichia pastoris, Nucl. Acids Res. 15:3859–3876.Google Scholar
  135. Tschopp, J. F., Sverlow, G., Kosson, R., Craig, W., and Grinna, L., 1987b, High-level secretion of glycosylated invertase in the methylotrophic yeast, Pichia pastoris, Bio/Technology 5:1305–1308.Google Scholar
  136. Ubiyvovk, V. M., Bystrykh, L. V., and Trotsenko, Y. A., 1983, Participation of glutathione in regulation of methanol metabolism in yeast, Mikrobiologiya 52:383–387.Google Scholar
  137. Uotila, L., and Koivusalo, M., 1974, Formaldehyde dehydrogenase from human liver. Purification, properties and evidence for the formation of glutathione thioesters by the enzyme, J. Biol. Chem. 249:7653–7663.PubMedGoogle Scholar
  138. Veenhuis, M., and Harder, W., 1987, Metabolic significance and biogenesis of microbodies in yeasts, in: Peroxisomes in biology and medicine (H. D. Fahimi and H. Sies, eds.), Springer-Verlag, Berlin, Heidelberg, pp. 436–458.Google Scholar
  139. Veenhuis, M., Dijken, J. P. van, and Harder, W., 1983, The significance of peroxisomes in the metabolism of one-carbon compounds in yeasts, Adv. Microbial Physiol. 24:1–82.Google Scholar
  140. Verduyn, C., Giuseppin, M. L. F., Scheffers, W. A., Dijken, J. P. van, 1988, Hydrogen peroxide metabolism in yeasts, Appl. Environm. Microbiol. 54:2086–2090.Google Scholar
  141. Vongsuvanlert, V., and Tani, Y., 1988a, Characterization of D-sorbitol dehydrogenase involved in D-sorbitol production of a methanol yeast, Candida boidinii (Kloechera sp.) no. 2201, Agric. Biol. Chem. 52:419–426.Google Scholar
  142. Vongsuvanlert, V., and Tani, Y., 1988b, Purification and characterization of xylose isomerase of a methanol yeast, Candida boidinii, which is involved in sorbitol production from glucose, Agric. Biol. Chem. 52:1817–1824.Google Scholar
  143. Waites, M. J., and Quayle, J. R., 1980, Dihydroxyacetone: a product of xylulose 5-phosphate-dependent fixation of formaldehyde by methanol-grown Candida boidinii, J. Gen. Microbiol. 118:321–327.Google Scholar
  144. Waites, M. J., and Quayle, J. R., 1981, The interrelation between transketolase and dihydroxyacetone synthase activities in the methylotrophic yeast Candida boidinii, J. Gen. Microbiol. 124:309–316.Google Scholar
  145. Yamada, Y., Okada, T., Ueshima, O., and Kondo, K., 1973, Coenzyme Q system in the classification of the ascosporogenous yeast genera Hansenula and Pichia, J. Gen. Appl. Microbiol. 19:189–208.Google Scholar
  146. Yarrow, D., and Meyer, S. A., 1978, Proposal for amendment of the diagnosis of the genus Candida Berkhout nom. cons., Int. J. Syst. Bacteriol. 28:611–615.Google Scholar
  147. Yasuhara, S., Kawamoto, S., Tanaka, A., Osumi, M., and Fukui, S., 1976, Induction of catalase activity in a methanol-utilizing yeast, Kloeckera sp. no. 2201, Agr. Biol. Chem. 40:1771–1780.Google Scholar
  148. Yonehara, T., and Tani, Y., 1987, Highly efficient production of ATP by a methanol yeast, Candida boidinii (Kloeckera sp.) no. 2201, J. Ferment. Technol. 65:255–260.Google Scholar
  149. Zwart, K. B., and Harder, W., 1983, Regulation of the metabolism of some alkylated amines in the yeasts Candida utilis and Hansenula polymorpha, J. Gen. Microbiol. 129:3157–3169.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • W. de Koning
    • 1
  • W. Harder
    • 2
  1. 1.Department of MicrobiologyUniversity of GroningenHarenThe Netherlands
  2. 2.TNO-Institute of Environmental SciencesDelftThe Netherlands

Personalised recommendations