Computer-Aided Decision Techniques for Hydrogeochemical Uranium Exploration

  • Patrice Poyet
Part of the Computer Applications in the Earth Sciences book series (CAES)


Multivariate analysis has been recognized as a powerful tool in geochemical exploration, but special emphasis also has been given to the necessity to complete adequate preliminary investigation of the data before attempting to use sophisticated data processing and manipulations. The methodology presented here relies on extensive experience with multivariate methods gained from the processing of large case studies coming from surveys carried out by French mining companies using hydrogeochemical uranium exploration. We have developed a robust methodological approach and a set of integrated software available on microcomputers to model the distribution of elements in water analysis and to account for the mixing of the geochemical end-members observed and to tackle the definition of an adjustable modeling of background compositions and of their related anomalies after the removal of the disturbing outliers from the recognized statistical populations has been achieved. The policies used lead to an efficient set of data processing, data integration, and data representation software making it possible to offer practical assistance to the exploration geochemist when faced with decision-making processes.


Factor Score Silicified Layer Logical Predicate Geochemical Exploration Homogeneous Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, T. W., 1958, An introduction to multivariate statistical analysis: John Wiley & Sons, New York, 374 p.MATHGoogle Scholar
  2. Bauer, J., and Holz, D., 1989, Otello, An object-oriented implementation of an electronic book: Proc. Workshop on Object Oriented Document Manipulation BIGRE no. 63-64, p. 42-51.Google Scholar
  3. Bensadoun, O., Chrisment, C., Pujolle, G., and Zurfluh, G., 1989, Bases d’informations généralisées, approche hypertexte pourla consultation de documents multimédia: Modèles et Bases de données, no. 13/14: p. 37–52.Google Scholar
  4. Benzecri, J. P., andBenzecri, F., 1980, Pratique de l’analyse des données: l’analyse des correspondances: exposé élémentaire: v. 1, Dunod, Paris, 424 p.Google Scholar
  5. Boock, G., 1986, Object-Oriented Development: IEEE Trans. on Software Engineering, v. SE-12, no. 2, 211–221.CrossRefGoogle Scholar
  6. Bobrow, D. G., and Kiczales, G., 1988, The common lisp object system metaobject kernel, a status report: Proc. International Workshop on LISP Evolution and Standardization, Paris, France, p. 27-32.Google Scholar
  7. Botbol, J. M., Sinding-Larsen, R., McCammon, R. B., and Gott, C. B., 1978, A regionalized multivariate approach to target selection in geochemical exploration: Econ. Geology, v. 73, no. 4, p. 534–546.CrossRefGoogle Scholar
  8. Briand, H., Ducateau, C., Hebrail, Y., Herin, D., Kouloumdjian, J., 1989, Une démarche générale de conception d’une base de données du niveau logique au niveau physique: Modèles et Bases de Données, no. 12, p. 65–81.Google Scholar
  9. Clark, I., 1977a, Snark, a four dimensional trend-surface computer program: Computers & Geosciences, v. 3, no. 3, p. 283–308.CrossRefGoogle Scholar
  10. Clark, I., 1977b, Practical kriging in three dimensions: Computers & Geosciences, v. 3, no. 2, p. 173–180.CrossRefGoogle Scholar
  11. Cointe, P., 1988: Towards the design of a CLOS Metaobject Kernel: ObjVlisp as a first layer: Proc. International Workshop on LISP Evolution and Standardization, Paris, France, p. 33-40.Google Scholar
  12. Cooley, W. W., and Lohnes, P. R., 1971: Multivariate data analysis: John Wiley & Sons, New York, 364 p.MATHGoogle Scholar
  13. Corby, O., 1987: BB1 en SMECI: Proc. 6ème Congrès Reconnaissance des Formes et Intelligence Artificielle de l’Association Française de Cybernétique Economique et Technique, p. 581-586.Google Scholar
  14. Cormack, R. M., 1971, A review of classification: Jour. Roy. Stat. Soc., London, Ser. A, v. 134, 321–367.MathSciNetCrossRefGoogle Scholar
  15. Cox, B. J., 1986, Object-oriented programming: An evolutionary approach, Addison-Wesley Publ. Co., Reading, Massachusetts, 217 p.Google Scholar
  16. Davis, J. C., 1973, Statistics and data analysis in geology: John Wiley & Sons, New York, 550 p.Google Scholar
  17. DeMichiel, L. G., and Gabriel R. P., 1987, The common lisp object system: Proc. European Conference on Object-Oriented Programming, (reprinted as Bigre+Globule, no. 54), Paris, France, 201-220.Google Scholar
  18. Devin, M., 1988, AIDA: machine independent window/mouse interface development tool for Le-Lisp: Proc. International Workshop on LISP Evolution and Standardization, Paris, France, p. 55-61.Google Scholar
  19. Diday, E., 1975, Classification automatique séquentielle pour grands tableaux: Jour. RAIRO, no. 3, p. 29–75.MathSciNetGoogle Scholar
  20. Duda, R. O., Gaschnig, J. G., and Hart, P., 1979, Model design in the PROSPECTOR consultant system for mineral exploration, in Michie, D., ed., Expert Systems in the Microelectronic Age, Edinburgh Univ. Press, p. 153-167.Google Scholar
  21. Duda, R., and Hart, P., 1973, Pattern classification and scene analysis: Wiley Interscience Publ., New York, 482 p.MATHGoogle Scholar
  22. Duval, J. S., 1976, Statistical interpretation of airborne gamma-ray spectroscopic data using factor analysis: Proc. Exploration for Uranium ore Deposits, IAEA, Vienna, Austria, p. 71–80.Google Scholar
  23. Everitt, B., 1974, Cluster analysis: Heinemann, London, 122 p.Google Scholar
  24. Fisher, N. L, 1983, Graphical methods in nonparametric statistics: a review and annotated bibliography: Intern. Stat. Rev., v. 51, no. 1, p. 25–58.MATHCrossRefGoogle Scholar
  25. Gale, W. A., ed., 1986. Artificial intelligence and statistics: Addison-Wesley Publ. Co., Reading, Massachusetts, 418 p.Google Scholar
  26. Goldberg, A., and Robson, D., 1983, Smalltalk-80, The language and its implementation: Addison-Wesley Publ. Co., Reading, Massachusetts, 234 p.MATHGoogle Scholar
  27. Harman, H. H., 1967, Modern factor analysis (2nd ed.): Univ. of Chicago Press, 474 p.Google Scholar
  28. Hoffman, S. J., and Mitchell, G. G., 1984, The micro-computers in geochemical exploration: Jour. Geochem. Explor., v. 21, no. 4, p. 437–454.CrossRefGoogle Scholar
  29. Howarth, R. J., 1977, Cartography in geochemical exploration: Sci. Terre Inform. Geol., no. 9, p. 105–28.Google Scholar
  30. Howarth, R. J., 1983, Statistics and data analysis in geochemical prospecting: in Howarth, R. J., ed., Elsevier Science Publ., 437 p.Google Scholar
  31. Howarth, R. J., 1984, Statistical applications in geochemical prospecting: a survey of recent developments: Jour. Geochem. Explor., v. 22, no. 1, p. 41–61.CrossRefGoogle Scholar
  32. Howarth, R. J., Koch, G. S., Chork, C. Y., Carpenter, R. H., and Schuenemeyer, J. Y., 1980, Statistical map analysis techniques applied to regional distribution of uranium in stream sediment samples from the southestern United States for the national Uranium Resource Evaluation Program: Jour. Math. Geology, v. 12, no. 6, p. 339–366.CrossRefGoogle Scholar
  33. Howarth, R. J., and Sinding-Larsen, R., 1983, Multivariate analysis, in Howarth, R. J., ed., Handbook of exploration geochemistry, v. 2: Statistics and data analysis in geochemical prospecting: Elsevier Science Publ., Amsterdam, p. 207–289.Google Scholar
  34. Klovan, J. E., 1981, A generalization of extended Q-mode factor analysis to matrices with variable row-sums: Jour. Math. Geology, v. 13, no. 3, p. 217–224.CrossRefGoogle Scholar
  35. Klovan, J. E., and Imbrie, J., 1971, An algorithm and FORTRAN IV program for large scale Q-mode factor analysis and calculation of factor scores: Jour. Math. Geology, v. 3, no. 1, p. 61–77.CrossRefGoogle Scholar
  36. Klovan, J. E., and Miesch, A. T., 1976, Extended Cabfac and Q-model computer programs for Q-mode factor analysis of compositional data: Computers & Geosciences, v. 1, no. 3, p. 161–178.CrossRefGoogle Scholar
  37. Leymarie, P., and Durandau, A., 1985, The integration of geochemical exploration data, in Glaeser, P., ed., The role of data in scientific progress: Elsevier Science Publ., Amsterdam, p. 33–37.Google Scholar
  38. Leymarie, P., and Heckert Gripp, A., 1983, Mise au point, documentation et évaluation d’un logiciel de traitement interactif des données géochimiques sur console image en couleurs: unpubl. report CNRS/ DGRST, 220 p.Google Scholar
  39. Leymarie, P., and Poyet, P., 1983, Géochimie en roche: relations avec les potentialités métallogéniques de l’uranium: Proc. Fifth Meeting of the Contact Group Uranium Exploration Methods and Techniques, European Community Commission, Brussels, Nov. 24-25, 5 p.Google Scholar
  40. Matheron, G., 1972, Théorie des variables régionalisées, in Traité d’informatique géologique: Masson Publ., Paris, p. 307–378.Google Scholar
  41. McCammon, R. B., 1986, The PROSPECTOR mineral consultant system: a micro-computer based expert system for regional resource evaluation: U.S. Geology Survey Bull. 1967, 35 p.Google Scholar
  42. McCammon, R. B., Botbol, J. M., Sinding-Larsen, R., and Bowen, R. W., 1983, Characteristic analysis: Final program and a possible discovery: Jour. Math. Geology, v. 15, no. 1, p. 59–83.CrossRefGoogle Scholar
  43. Mellinger, M., Chork, S. C., Dijkstra, S., Esbensen, K. H., Kurlz, H., Lindqvist, L., Saheurs, J. P., Schermann, O., Siewers, U., and Westerberg, K., 1984, The multivariate chemical space, and the integration of the chemical, geographical, and geophysical spaces: Proc. Intern. Geoch. Explor. Symposium, p. 143-148.Google Scholar
  44. Meyer, B., 1988, Object-oriented software construction: Prentice Hall International Series in Computer Sciences, Cambridge Univ. Press, 534 p.Google Scholar
  45. Miesch, A. T., 1976a, Interactive computer programs for petrologic modeling with extended Q-mode factor analysis: Computers & Geosciences, v. 2, no. 4, p. 439–492.CrossRefGoogle Scholar
  46. Miesch, A. T., 1976b, Q-mode factor analysis of compositional data: Computers & Geosciences, v. 1, no. 3, p. 147–159.CrossRefGoogle Scholar
  47. Moon, D., and Weinreb, D., 1981, Flavours: Message passing in the Lisp Machine: MIT AI Lab. AI Memo no. 602 (1980), and the Lisp Machine Manual, Massachussets, p. 63.Google Scholar
  48. Moon, D., 1986, Object oriented programming with Flavors: Proc. OOPSLA’87, Special Issue of SIGPLAN Notices, Portland Oregon, v. 21, no. 11, p. 1–16.CrossRefGoogle Scholar
  49. Nii, P., 1986a: Blackboard systems: the blackboard model of problem solving and the evolution of blackboard architectures: A.I. magazine, July 1986, p. 38-53.Google Scholar
  50. Nii, P., 1986b. Blackboard system: blackboard application system, blackboard systems from a knowledge engineering perspective: A.I. magazine, August 1986, p. 82-106.Google Scholar
  51. Poyet, P., 1986, Un système d’aide à la décision en prospection Uranifère: discrimination des anomalies géochimiques multiélémentaires significatives: Thèse de Doctorat d’Etat ès Sciences, Université de Nice, 436 p.Google Scholar
  52. Poyet, P., 1990, Integrated access to information systems: Applied Artificial Intelligence, Hemisphere Publ. Co., v. 4, no. 3, p. 179–238.CrossRefGoogle Scholar
  53. Poyet, P., and Detay, M., 1988a, HYDROEXPERT: Aide à l’implantation d’ouvrages d’hydraulique villageoise: Proc. Eighth Int. Workshop on Expert Systems and their Applications, Avignon, France, v. 2, p. 397-410.Google Scholar
  54. Poyet, P., and Detay, M., 1988b, L’avènement d’une génération de systèmes experts de terrain, in Demissie, M., and Stout, G. E., eds., Proc. of the Sahel Forum on the State-of-the-Art of Hydrology and Hydrogeology in the Arid and Semi Arid Areas of Africa, Ouagadougou, Burkina Faso, p. 567-577.Google Scholar
  55. Poyet, P., and Detay, M., 1989a, Enjeux sociaux et industriels de l’intelligence artificielle en hydraulique villageoise: Proc. Première Convention Intelligence Artificielle, Hermes Publ., v. 2, Paris, p. 621-652.Google Scholar
  56. Poyet, P., and Detay, M., 1989b, HYDROLAB: Un système expert de poche en hydraulique villageoise: Technique et Science Informatiques, v. 8, no. 2, p. 157–167.Google Scholar
  57. Poyet, P., and Detay, M., 1989c, HYDROLAB: A new generation of compact expert systems: Computers & Geosciences, v. 15, no. 3, p. 255–267.CrossRefGoogle Scholar
  58. Poyet, P., and Detay, M., 1990, Artificial intelligence tools and techniques for water resources assessment in Africa, in Kuerzl, H., and Merriam, D.F., eds., Microcomputers applications in geology: Plenum Press Publ., New York, this volume.Google Scholar
  59. Roche, C., and Laurent, J. P., 1989, Les approches objets et le langage LRO2 (KEOPS): Technique et Sciences Informatiques, v. 8, no. 1, p. 21–39.Google Scholar
  60. Sandvad, E., 1989, Hypertext in an object-oriented programming environment: Proc. Workshop on Object Oriented Document Manipulation, France, BIGRE no. 63-64, p. 30-41.Google Scholar
  61. Scheifler, R. W., and Gettys, J., 1986, The X window system: MIT Report of Athena Project, Cambridge, Massachussets, 29 p.Google Scholar
  62. Sibertin-Blanc, C., 1988, Le modèle de données objet comme formalisme de modélisation d’une base de données: Modèles et Bases de Données, Juin 1988, no. 9, p. 27-40.Google Scholar
  63. Sinding-Larsen, R., 1975, A computer method for dividing a regional geochemical survey area into homogeneous subareas prior to statistical interpretation, in Elliott, I. L., and Fletcher, W. K., eds., Geochemical exploration 1974: Elsevier Science Publ., Amsterdam, p. 191–217.Google Scholar
  64. Sinding-Larsen, R., 1977, Comments of the statistical treatment of geochemical exploration data: Sci. Terre Inform. Geol., no. 9, p. 73–90.Google Scholar
  65. Tryon, R. C. and Bailey, D. E., 1970, Cluster analysis: McGraw-Hill Book Co., New York, 347 p.Google Scholar
  66. Tuckey, J. W., 1977, Exploratory data analysis: Addison-Wesley, Reading, Massachusetts, 506 p.Google Scholar
  67. Tuckey, J. W., 1979, Robust techniques for the user, in Launer, R. L., and Wilkinson, G. N., eds., Robustness in statistics: Academic Press, New York, p. 103–106.Google Scholar
  68. Valduriez, P., 1987, Objets complexes dans les systèmes de bases de données relationnels: Technique et Science Informatiques, v. 6, no. 5, p. 405–418.Google Scholar
  69. Valenchon, F., 1982. The use of correspondance analysis in geochemistry: Jour. Math. Geology, v. 14, no. 4, p. 331–342.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Patrice Poyet
    • 1
  1. 1.Centre Scientifique et Technique Du BatimentValbonneFrance

Personalised recommendations