Pharmacokinetics and Metabolism of Cardiovascular Therapeutic Proteins

  • Paul A. Cossum
  • Robert A. BaughmanJr.
Part of the Pharmaceutical Biotechnology book series (PBIO, volume 1)


The blood coagulation pathway consists of a series of inactive and active enzymes (Fig. 1). In certain individuals, some of the elements, or factors, of this cascade may be inoperative or have reduced activity, and in some cases may be missing. Such cases give rise to the bleeding disorder hemophilia. There are three categories of patients with the deficiency: patients with normal amounts of factor that has reduced clotting activity; patients with factor and activity equally reduced; patients in whom the factor and its activity are undetectable. The existence of at least two forms of hemophilia was suggested by the results of experiments performed by Pavlovsky (1947) in which the mixing of the blood of two patients classified as hemophilics caused a correction of the clotting times of each blood sample. The more common hemophilia A, or classical hemophilia, and hemophilia B, or Christmas disease, occur as a result of factor VIII (FVIII) and factor IX (FIX) deficiency, respectively. These two diseases are X-linked recessive traits in which males are affected. Patients with severe hemophilia A or B have undetectable (less than 1% of normal) concentrations of FVIII or FIX and suffer from recurrent
Figure 1.

Simplified scheme depicting the relationship of the intrinsic and extrinsic coagulation pathways and the fibrinolysis pathway. Roman numerals refer to individual coagulation factors, and tPA, UK, SK, and APSAC refer to tissue plasminogen activator, urokinase, streptokinase, and anisoylated plasminogen streptokinase activator complex, respectively.

spontaneous hemarthroses and retroperitoneal bleeding. A related disorder is von Willebrand’s disease which is caused by a lack of von Willebrand’s factor (and also FVIII). von Willebrand’s factor is essential for platelet aggregation. Other recognized hemophilias result from deficiencies in factors V, VII, X, XI, and XIII.


Plasminogen Activator Factor VIII Mean Residence Time Anisoylated Plasminogen Streptokinase Activator Complex Roller Bottle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aggeler, P. M., 1961, Physiological basis for transfusion therapy in hemorrhagic disorders, Transfusion 1:71–74.PubMedGoogle Scholar
  2. Allain, J. P., 1984, Principles of in vivo recovery and survival studies, Scand. J. Haematol 33(Suppl. 40):161–165.Google Scholar
  3. Astrup, T., and Permin, P. M., 1947, Fibrinolysis in animal organism, Nature 159:681–682.PubMedGoogle Scholar
  4. Bakhit, C., Lewis, D., Billings, R., and Malfroy, B., 1987, Cellular catabolism of recombinant tissue-type plasminogen activator, J. Biol. Chem. 262:8716–8720.PubMedGoogle Scholar
  5. Barrowcliffe, T. W., Stableforth, R., and Dormandy, K. M., 1973, Small scale preparation and clinical use of factor IX prothrombin complex, Vox Sang. 25:426–441.PubMedGoogle Scholar
  6. Baughman R. A., 1987, Pharmacokinetics of tissue plasminogen activator, in: Tissue Plasminogen Activator in Thrombolytic Therapy (B. E. Sobel, D. Collen, and E. B. Grossbard, eds.), Dekker, New York, pp. 41–53.Google Scholar
  7. Been, M., deBono, D. P., Muir, A. L., Boulton, F. E., Fears, R., Standring, R., and Ferres, H., 1986, Clinical effects and kinetic properties of intravenous anistre-plase-anisoylated plasminogen-streptokinase activator complex (BRL26921) in acute myocardial infarction, Int. J. Cardiol. 11:53–61.PubMedGoogle Scholar
  8. Bertina, R. M., and Veltkamp, J. J., 1981, Physiology and biochemistry of factor IX, in: Haemostasis and Thrombosis (A. L. Bloom and D. P. Thomas, eds.), Churchill Livingstone, Edinburgh, pp. 98–110.Google Scholar
  9. Bidwell, E., Booth, J. M., Dike, G. W. R., and Denson, K. W. E., 1967, The preparation for therapeutic use of a concentrate of factor IX containing also factors II, VII and X, Br. J. Haematol. 13:586–590.Google Scholar
  10. Biggs, R., and Denson, K. W. E., 1963, The fate of prothrombin and factors VII, IX and X transfused to patients deficient in these factors, Br. J. Haematol 9:532–547.PubMedGoogle Scholar
  11. Binder, B. R., Spragg, J., and Austen, K. F., 1979, Purification and characterization of human vascular plasminogen activator derived from blood vessel perfusates, J. Biol Chem. 254:1998–2003.PubMedGoogle Scholar
  12. Bloom, A. L., 1990, Physiology of blood coagulation, Haemostasis 20(Suppl.): 14–29.PubMedGoogle Scholar
  13. Brinkhous, K. M., Hedner, U., Garris, J. B., Diness, V., and Read, M. S., 1989, Effect of recombinant factor VIIa on the hemostatic defect in dogs with hemophilia A, hemophilia B, and von Willebrand disease, Proc. Natl Acad. Sci. USA 86:1382–1386.PubMedGoogle Scholar
  14. Broze, G. J., and Majerus, P. W., 1980, Purification and properties of human coagulation factor VII, J. Biol. Chem. 255:1242–1247.PubMedGoogle Scholar
  15. Broze, G. J., and Miletich, J. P., 1987, Characterization of the inhibition of tissue factor in serum, Blood 69:150–155.PubMedGoogle Scholar
  16. Carson, S. D., 1987, Tissue factor (coagulation factor III) inhibition by apolipoprotein A-II, J. Biol Chem. 262:718–721.PubMedGoogle Scholar
  17. Chavin, S. I., and Weidner, S. M., 1984, Blood clotting factor IX. Loss of activity after cleavage of sialic acid residues, J. Biol Chem. 259:3387–3390.PubMedGoogle Scholar
  18. Christensen, L. R., and MacLeod, C. M., 1945, Proteolytic enzyme of serum: Characterization, activation, and reaction with inhibitors, J. Gen. Physiol. 28:559–583.PubMedGoogle Scholar
  19. Col, J. J., Col-DeBeys, S. M., Renkin, J. P., LaVenne-Pardonge, E. M., Bachy, J. L., and Morian, M. H., 1989, Pharmacokinetics, thrombolytic efficacy and hemorrhagic risk of different streptokinase regimens in heparin-treated acute myocardial infarction, Am. J. Cardiol. 63:1185–1192.PubMedGoogle Scholar
  20. Collen, D., Stassen, J. M., Marafino, B. J., Builder, S., DeCock, F., Ogez, J., Tajiri, D., Pennica, D., Bennett, W. F., Salwa, J., and Hoyng, C. F., 1984, Biological properties of human tissue-type plasminogen activator obtained by expression of recombinant DNA in mammalian cells, J. Pharmacol. Exp. Ther. 231:146–152.PubMedGoogle Scholar
  21. Collen, D., Zamarron, C., Lijnen, H. R., and Hoylaerts, M., 1986, Activation of plasminogen pro-urokinase. II. Kinetics, J. Biol. Chem. 261:1259–1266.PubMedGoogle Scholar
  22. Cossum, P., Littlewood, J., Ferraiolo, B., Green, J., and Bunting, S., 1990, Recombinant human tissue factor (rhTF) pharmacokinetics and effects in normal and hemophiliac dogs, Pharm. Res. 7(Suppl.):S-45 (abstract).Google Scholar
  23. Daly, H. M., and Haddon, M. E., 1988, Clinical experience with a pasteurized human plasma concentrate in factor XIII deficiency, Thromb. Haemostas. 59:171–174.Google Scholar
  24. Eaton, D., Rodriguez, H., and Vehar, G. A., 1986, Proteolytic processing of human factor VIII. Correlation of specific cleavages by thrombin, factor Xa, and activated protein C with activation and inactivation of factor VIII coagulant activity, Biochemistry 25:505–512.PubMedGoogle Scholar
  25. Esmail, A. F., Dupe, R. J., English, P. D., and Smith, R. A. G., 1984, Pharmacokinetic and pharmacodynamic comparison of acylated streptokinase plasminogen complexes with different deacylation rate constant, Haemostasis 14: 84.Google Scholar
  26. Fear, J. D., Miloszewski, K. J. A., and Losowsky, M. S., 1983, The half-life of factor XIII in the management of inherited deficiency, Thromb. Haemostas. 49:102–105.Google Scholar
  27. Fears, R., Ferres, H., and Standring, R., 1987, The protective effect of acylation on the stability of anisoylated plasminogen streptokinase activator complex in human plasma, Drugs 33(Suppl. 3):57–63.PubMedGoogle Scholar
  28. Ferres, H., Hibbs, M., and Smith, R. A. G., 1987, Deacylation studies in vitro on anisoylated plasminogen streptokinase activator complex, Drugs 33(Suppl. 3):80–82.PubMedGoogle Scholar
  29. Fisher, K. L., Gorman, C., Vehar, G., O’Brien, D. P., and Lawn, R. M., 1987, Cloning and expression of tissue factor cDNA, Thromb. Res. 48:89–99.PubMedGoogle Scholar
  30. Fletcher, A. D., Alkjaersig, N., and Sherry, S., 1959, The clearance of heterologous protein from the circulation of normal and immunized man, J. Clin. Invest. 37:1306–1315.Google Scholar
  31. Fong, K.-L., and Lynn, R. K., 1986, Disposition and metabolism of tissue-type plasminogen activator (tPA) in the isolate perfused rat liver, Pharmacologist 28: 117.Google Scholar
  32. Fong, K.-L., Crysler, C. S., Mico, B. A., Boyle, K. E., Kopia, G. A., Kopaciewicz, L., and Lynn, R. K., 1988, Dose-dependent pharmacokinetics of recombinant tissue-type plasminogen activator in anesthetized dogs following intravenous infusion, Drug Metab. Dispos. 16:201–206.PubMedGoogle Scholar
  33. Fuchs, H. E., Trapp, H. G., Griffith, M. J., Roberts, H. R., and Pizzo, S. V., 1984, Regulation of factor IXa in vitro in human and mouse plasma and in vivo in the mouse, J. Clin. Invest. 73:1696–1703.PubMedGoogle Scholar
  34. Fuchs, H. E., Berger, H., and Pizzo, S. V., 1985, Catabolism of human tissue plasminogen activator in mice, Blood 65:539–544.PubMedGoogle Scholar
  35. Garabedian, H. D., Gold, H. K., Leinbacj, R. C., Johns, J. A., Yasuda, T., Kanke, M., and Collen, D., 1987, Comparative properties of two clinical preparations of recombinant tissue-type plasminogen activator in patients with acute myocardial infarction, J. Am. Coll. Cardiol. 9:599–607.PubMedGoogle Scholar
  36. Gemmill, J. D., Hogg, K. J., Burns, J. M., Rae, A. P., Dunn, F. G., Fears, R., Ferres, H., Standring, R., Greenwood, H., Pierce, D., and Hills, W. S., 1991, A comparison of the pharmacokinetic properties of streptokinase and anistreplase in acute myocardial infarction, Br. J. Clin. Pharmacol. 31:143–147.PubMedGoogle Scholar
  37. Gill, F. M., 1984, The natural history of factor VIII inhibitors in patients with hemophilia A, Prog. Clin. Biol. Res. 150:19–24.PubMedGoogle Scholar
  38. Girard, T. J., Warren, L. A., Novotny, W. F., Likert, K. M., Brown, S. G., Miletich, J. P., and Broze, G. J., 1989, Functional significance of the Kunitz-type inhibitory domains of lipoprotein-associated coagulation inhibitor. Nature 338: 518–520.PubMedGoogle Scholar
  39. Gonmori, H., and Takeda, Y., 1975, Properties of canine tissue thromboplastin from brain, lung, arteries and veins, Am. J. Physiol. 229:618–626.PubMedGoogle Scholar
  40. Goodnight, S. H., Britell, C. W., Wuepper, K. D., and Osterud, B., 1979, Circulating factor IX antigen-inhibitor complexes in hemophilia B following infusion of a factor IX concentrate, Blood 53:93–103.PubMedGoogle Scholar
  41. Grierson, D. S., and Bjornsson, T. D., 1987, Pharmacokinetics of streptokinase in patients based on amidolytic activator complex activity, Clin. Pharmacol. Ther. 41:304–313.PubMedGoogle Scholar
  42. Gunzler, W. A., Steffens, G. J., Otting, F., Kim, S. M., Frankus, E., and Rohe, L., 1982, The primary structure of high molecular mass urokinase from human urine. The complete amino acid sequence of the A chain, Hoppe-Seylers Z. Physiol Chem. 363:1155–1165.PubMedGoogle Scholar
  43. Hedner, U., and Kisiel, W., 1983, Use of human factor VIIa in the treatment of two hemophilia A patients with high-titer inhibitors, J Clin. Invest. 71:1836–1841.PubMedGoogle Scholar
  44. Hedner, U., Glazer, S., Pingel, K., Alberts, K. A., Blomback, M., Schulman, S., and Johnsson, H., 1988, Successful use of recombinant factor VIIa in patients with severe haemophilia A during synovectomy, Lancet 2: 1193.PubMedGoogle Scholar
  45. Hellstern, P., Miyashita, C., Kohler, M., von Blohn, G., Kiehl, R., Biro, G., Schwerdt, H., and Wenzel, E., 1987, Measurement of factor VIII procoagulant antigen in normal subjects and in hemophilia A patients by an immunoradiometric assay and by an enzyme-linked immunosorbent assay, Haemostasis 17:173–181.PubMedGoogle Scholar
  46. Hoag, M. S., Aggeler, P. M., and Powell, A. H., 1960, Disappearance rate of concentrated proconvertin extracts in congenital and acquired hypoconvertinemia, J. Clin. Invest. 39:554–563.PubMedGoogle Scholar
  47. Hoag, M. S., Johnson, F. F., Robinson, J. A., and Aggeler, P. M., 1969, Treatment of hemophilia B with a new clotting-factor concentrate, N. Engl J. Med. 280:581–583.PubMedGoogle Scholar
  48. Holvoet, P., Cleemput, H., and Collen, D., 1985, Assay of human tissue-type plasminogen activator (t-PA) with an enzyme-linked immunosorbent assay (ELISA) based on three murine monoclonal antibodies to t-PA, Thromb. Haemostas. 54:684–687.Google Scholar
  49. Hotchkiss, A., Refino, C. J., Leonard, C. K., O’Connor, J. V., Crowley, C., McCabe, J., Tate, K., Nakamura, G., Powers, D., Levinson, A., Mohler, M., and Spellman, M., 1988, The influence of carbohydrate structure on the clearance of recombinant tissue-type plasminogen activator, Thromb. Haemostas. 60: 255–261.Google Scholar
  50. Ichinose, A., Fujikawa, K., and Suyama, T., 1986, The activation of prourokinase by plasma kallikrein and its inactivation by thrombin, J. Biol. Chem. 261: 3486–3489.PubMedGoogle Scholar
  51. Jackson, K. W., and Tang, J., 1982, Complete amino acid sequence of streptokinase and its homology with serine proteases, Biochemistry 21:6620–6625.PubMedGoogle Scholar
  52. Kadhom, N., Wolfrom, C., Gautier, M., Allain, J. P., and Frommel, D., 1988, Factor VIII procoagulant antigen in human tissues, Thromb. Haemostas. 59:289–294.Google Scholar
  53. Kjellman, H., 1984, Calculations of factor VIII in vivo recovery and half-life, Scand. J. Haematol. 33(Suppl. 40): 165–174.Google Scholar
  54. Kohler, M., Seifreid, E., Hellstern, P., Pindur, G., Miyashita, C., Morsdorf, S., Fasco, F., and Wenzel, E., 1988, In vivo recovery and half-life time of a steam-treated factor IX concentrate in hemophilia B patients, Blut 57:341–345.PubMedGoogle Scholar
  55. Kohler, M., Hellstern, P., Pindur, G., Wenzel, E., and von Blohm, G., 1989, Factor VII half-life after transfusion of a steam-treated prothrombin complex concentrate in a patient with homozygous factor VII deficiency, Vox Sang. 56:200–201.PubMedGoogle Scholar
  56. Kopia, G. A., Kopaciewicz, L. J., Fong, K.-L., Crysler, C. S., Boyle, K., and Ruffblo, R. R., 1988, Evaluation of the acute hemodynamic effects and pharmacokinetics of coronary thrombolysis produced by intravenous tissue-type plasminogen activator in the anesthetized dog, J. Cardiovasc. Pharmacol. 12:308–316.PubMedGoogle Scholar
  57. Korninger, C., Stassen, J. M., and Collen, D., 1981, Turnover of human extrinsic (tissue-type) plasminogen activator in rabbits, Thromb. Haemostas. 46: 658–661.Google Scholar
  58. Kuiper, J., Otter, M., Rijken, D. C., and van Berkel, T. J. C., 1988, Characterization of the interaction in vivo of tissue-type plasminogen activator with liver cells, J. Biol. Chem. 263:18220–18224.PubMedGoogle Scholar
  59. Kuzel, T., Green, D., Stulberg, S. D., and Baron, J., 1988, Arthropathy and surgery in congenital factor VII deficiency, Am. J. Med. 84:771–774.PubMedGoogle Scholar
  60. Lewis, J. H., Bontempo, F. A., Spero, J. A., Ragni, M. V., and Starzi, T. E., 1985, Liver transplantation in a hemophiliac, N. Engl. J. Med. 312:1189–1192.PubMedGoogle Scholar
  61. Littlewood, J. D., and Barrowcliffe, T. W., 1987, The development and characterization of antibodies to human factor VIII in haemophilic dogs, Thromb. Haemostas. 57:314–321.Google Scholar
  62. Loeliger, E. A., and Hensen, A., 1964, On the turnover of factors II, VII, IX, X under pathological conditions, Thromb. Diath. Haemorrh. 13(Suppl.):95.Google Scholar
  63. Loewy, A. G., Dahlberg, A., Dunathan, D., Kriel, R., and Wolfinger, H. L., 1961, Fibrinases. II. Some physical properties, J Biol. Chem. 236:2634–2643.PubMedGoogle Scholar
  64. Longo, G., Matucci, M., Messori, A., Morfini, M., and Rossi-Ferrini, P., 1986, Pharmacokinetics of a new heat-treated concentrate of factor VIII estimated by model-independent methods, Thromb. Res. 42:471–476.PubMedGoogle Scholar
  65. Longo, G., Cinotti, S., Filimberti, E., Giustarini, G., Messori, A., Morfini, M., and Rossi-Ferrini, P., 1987, Single-dose pharmacokinetics of factor IX evaluated by model-independent methods, Eur. J. Haematol. 39:426–433.PubMedGoogle Scholar
  66. Markus, G., Evers, J. L., Hobika, J. H., 1976, Activator activities of the transient forms of the human plasminogen-streptokinase complex during its proteolytic conversion to the stable activator complex, J. Biol. Chem. 251:6495–6504.PubMedGoogle Scholar
  67. McLellan, D. S., Pelly, C., McLellan, H. G., Jones, P., and Aronstam, A., 1982, The in vivo survival characteristics of factor VIII procoagulant antigen (VIILCAg) in haemophilia A subjects, Thromb. Res. 25:33–39.PubMedGoogle Scholar
  68. Mariani, G., Mannucci, P. M., Mazzucconi, M. G., and Capitanio, A., 1978, Treatment of congenital factor VII deficiency with a new concentrate, Thromb. Haemostas. 39:675–682.Google Scholar
  69. Matucci, M., Messori, A., Donati-Cori, G., Longo, G., Vannini, S., Morfini, M., Tendi, E., and Rossi-Ferrini, P. L., 1985, Kinetic evaluation of four factor VIII concentrates by model-independent methods, Scand. J. Haematol. 34:22–28.PubMedGoogle Scholar
  70. Messori, A., Longo, G., Matucci, M., Morfini, M., and Rossi-Ferrini, P. L., 1987, Clinical pharmacokinetics of factor VIII in patients with classic hemophilia, Clin. Pharmacokin. 13:365–380.Google Scholar
  71. Messori, A., Longo, G., Morfini, M., Cinotti, S., Filimberti, E., Giustarini, G., and Rossi-Ferrini, P., 1988, Multi-variate analysis of factors governing the pharmacokinetics of exogenous factor VIII in haemophiliacs, Eur. J. Clin. Pharmacol 35:663–668.PubMedGoogle Scholar
  72. Mohler, M. A., Refino, C. J., Chen, S. A., Chen, A. B., and Hotchkiss, A. J., 1986, D-Phe-Pro-Arg-chloromethylketone: its potential use in inhibiting the formation of in vitro artifacts in blood collected during tissue-type plasminogen activator thrombolytic therapy, Thromb. Haemostas. 56:160–164.Google Scholar
  73. Morfini, M., Longo, G., Matucci, M., Vannini, S., Messori, A., Filimberti, E., Duminuco, M., Avanzi, G., and Rossi-Ferrini, P., 1984, Cryoprecipitate and factor VIII commercial concentrates: In vitro characteristics and in vivo compartmental analysis, Ric. Clin. Lab. 14:681–691.PubMedGoogle Scholar
  74. Nilsson, I. M., Berntorp, E., and Zettervall, O., 1988, Induction of immune tolerance in patients with hemophilia and antibodies to factor VIII by combined treatment with intravenous IgG, cyclophosphamide and factor VIII, N. Engl. J. Med. 318:947–949.PubMedGoogle Scholar
  75. Nilsson, I. M., Berntorp, E., Zettervall, O., and Dahlback, B., 1990, Noncoagulation inhibitory factor VIII antibodies after induction of tolerance to factor VIII in hemophilia A patients, Blood 75:378–383.PubMedGoogle Scholar
  76. Nilsson, S., Wallen, P., and Mellbring, G., 1984, In vivo metabolism of human tissue-type plasminogen activator, Scand. J. Haematol 33:49–53.PubMedGoogle Scholar
  77. Nilsson, S., Einarsson, M., Ekvarn, L., Haggroth, L., and Mattson, C., 1985, Turnover of tissue plasminogen activator in normal and hepatectomized rabbits, Thromb. Res. 39:511–521.PubMedGoogle Scholar
  78. Noe, D. A., Bell, W. R., Ness, P. M., and Levin, J., 1986, Plasma clearance rates of coagulant factors VIII and IX in factor-deficient individuals, Blood 67:969–972.PubMedGoogle Scholar
  79. Over, J., Sixma, J. J., Doucet-de Brune, M., Trieschnigg, M. M., Vlooswijk, R. A., Beeser-Visser, N. H., and Bouma, B. N., 1978, Survival of 125iodine-labelled factor VIII in normals and patients with classic hemophilia, J. Clin. Invest. 62:223–234.PubMedGoogle Scholar
  80. Over, J., Sixma, J. J., Bouma, B. N., Bolhuis, P. A., Vlooswijk, R. A., and Beeser-Visser, N. H., 1981, Survival of iodine-125-labeled factor VIII in patients with von Willebrand’s disease, J Lab. Clin. Med. 97:332–344.PubMedGoogle Scholar
  81. Owen, C. A., and Bowie, W. J., 1975, Infusion therapy in hemophilia A and B, in: Handbook of Hemophilia (K. M. Brinkhous and H. C. Hemker, eds.), Excerpta Medica, Amsterdam, pp. 449–463.Google Scholar
  82. Pannell, R., and Gurewich, V., 1986, Pro-urokinase: A study of its stability in plasma and of a mechanism for its selective fibrinolytic effect, Blood 67:1215–1223.PubMedGoogle Scholar
  83. Pavlovsky, A., 1947, Contribution to the pathogenesis of hemophilia, Blood 2:185–191.PubMedGoogle Scholar
  84. Pennica, D., Holmes, W. E., Kohr, W. J., Harkins, R. N., Vehar, G. A., Ward, C. A., Bennett, W. F., Yelverton, E., Seeburg, H. L., Heyneker, H. L., Goeddel, D. V., and Collen, D., 1983, Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli, Nature 301:214–221.PubMedGoogle Scholar
  85. Pohl, G., Kalstrom, M., Bergsdorf, N., Wallen, P., and Jornvall, H., 1984, Tissue plasminogen activator: peptide analyses confirm an indirectly derived amino acid sequence; identify the active site serine residue, establish glycosylation sites and localize variant differences, Biochemistry 23:3701–3707.PubMedGoogle Scholar
  86. Ranby, M., Bergesdorf, N., and Nilsson, T., 1989a, Enzymatic properties of the one-and two-chain form of tissue plasminogen activator, Thromb. Res. 27: 175–183.Google Scholar
  87. Ranby, M., Nguyen, G., Scarabin, P. Y., and Samama, M., 1989b, Immunoreactivity of tissue plasminogen activator and its inhibitor complexes: Biochemical and multicenter validation of a two-site immunosorbent assay, Thromb. Haemostas. 61: 409–414.Google Scholar
  88. Rao, L. V. M., Rapaport, S. L., and Bajaj, S. P., 1986, Activation of human factor VII in the initiation of tissue factor-dependent coagulation, Blood 68:685–691.PubMedGoogle Scholar
  89. Ratnoff, O. D., 1986, Factor VIII concentrates, J. Am. Med. Assoc. 255:325–326.Google Scholar
  90. Reddy, K. N. N., 1976, Kinetics of active center formation in dog plasminogen by streptokinase and activity of a modified streptokinase, J. Biol. Chem. 251:3913–3920.Google Scholar
  91. Reddy, K. N. N., 1988, Streptokinase—Biochemistry and clinical application, Enzyme 40:79–89.PubMedGoogle Scholar
  92. Rick, M. E., Popovsky, M. A., and Krizek, D. M., 1985, Degradation of factor VIII coagulant antigen by proteolytic enzymes, Br. J. Haematol 61:477–486.PubMedGoogle Scholar
  93. Rijken, D. C., and Collen, D., 1981, Purification and characterization of the plasminogen activator secreted by human melanoma cells in culture, J. Biol. Chem. 256:7035–7041.PubMedGoogle Scholar
  94. Rijken, D. C., Wijngaards, G., Zaal-DeJong, M., and Welbergen, J., 1979, Purification and partial characterization of plasminogen activator from human uterine tissue, Biochim. Biophys. Acta 580: 140.PubMedGoogle Scholar
  95. Rijken, D. C., Hoylaerts, M., and Collen, D., 1982, Fibrinolytic properties of one-chain and two-chain human extrinsic (tissue-type) plasminogen activator, J. Biol Chem. 257:2920–2925.PubMedGoogle Scholar
  96. Rock, G. A., Cruickshank, W. H., Tackaberry, E. S., Ganz, P. R., and Palmer, D. S., 1983, Stability of VIII:C in plasma: The dependence on protease activity and calcium, Thromb. Res. 29:521–535.PubMedGoogle Scholar
  97. Rodeghiero, F., Tosetto, A., DiBona, E., and Castaman, G., 1991, Clinical pharmaco-kinetics of a placenta-derived factor XIII concentrate in type I and type II factor XIII deficiency, Am. J. Hematol. 36:30–34.PubMedGoogle Scholar
  98. Rousell, R. H., Kasper, C. K., and Schwartz, R. S., 1989, The pharmacology of a new pasteurized antihemophilic factor concentrate derived from human blood plasma, Transfusion 29:208–212.PubMedGoogle Scholar
  99. Sandset, P. M., Warn-Cramer, B. J., Rao, L. V., Maki, S. L., and Rapaport, S. I., 1991, Depletion of extrinsic pathway inhibitor (EPI) sensitizes rabbits to disseminated intravascular coagulation induced with tissue factor: Evidence supporting a physiologic role for EPI as a natural anticoagulant, Proc. Natl. Acad. Sci. USA 88:708–712.PubMedGoogle Scholar
  100. Schleef, R. R., Wagner, N. V., Sinha, M., and Loskutoff, D. J., 1986, A monoclonal antibody that does not recognize tissue-type plasminogen activator bound to its naturally occurring inhibitor, Thromb. Haemostas. 56:328–332.Google Scholar
  101. Schneider, C. L., 1947, The active principle of placental toxin: thromboplastin; its inactivator in blood: antithromboplastin, Am. J. Physiol 149:123–129.PubMedGoogle Scholar
  102. Schwartz, R. S., Abildgaard, C. F., Aledort, L. M., Arkin, S., Bloom, A. L., Brackmann, H. H., Brettler, D. R., Fukui, H., Hilgartner, M. W., Inwood, M. J., Kasper, C. K., Kernoff, P. B., Levine, P. H., Lusher, J. M., Mannucci, P. M., Scharrer, I., MacKenzie, M. A., Pancham, N., Kuo, H. S., and Allred, R. U., 1990, Human recombinant DNA-derived antihemophilic factor (factor VIII) in the treatment of hemophilia A, N. Engl. J. Med. 323:1800–1805.PubMedGoogle Scholar
  103. Seligsohn, U., Kasper, C. K., Osterud, B., and Rapaport, S. L. 1979, Activated factor VII: Presence in factor IX concentrates and persistence in the circulation after infusion, Blood 53:828–837.PubMedGoogle Scholar
  104. Siefried, E., and Tanswell, P., 1987, Comparison of specific antibody, D-Phe-Pro-Arg-chloromethylketone and aprotinin for prevention of in vitro effects of recombinant tissue-type plasminogen activator on haemostasis parameters, Thromb. Haemostas. 58:921–926.Google Scholar
  105. Siefried, E., Tanswell, P., Rijken, D. C., Barrett-Bergshoeff, M. M., Su, C. A., and Kluft, C., 1988, Pharmacokinetics of antigen and activity of recombinant tissue-type plasminogen activator after infusion in healthy volunteers, Arzneim. Forsch. 38:418–422.Google Scholar
  106. Siefried, E., Tanswell, P., Ellbruck, D., Haerer, W., and Schmidt, A., 1989, Pharmacokinetics and haemostatic status during consecutive infusion of recombinant tissue-type plasminogen activator in patients with acute myocardial infarction, Thromb. Haemostas. 61:497–501.Google Scholar
  107. Siefring, G. E., and Castellino, F. J., 1976, Interaction of streptokinase with plasminogen: Isolation and characterization of a streptokinase degradation product, J. Biol. Chem. 257:3913–3920.Google Scholar
  108. Smedsrod, B., Einarsson, M., and Pertoft, H., 1988, Tissue plasminogen activator is endocytosed by mannose and galactose receptors of rat liver cells, Thromb. Haemostas. 59:480–484.Google Scholar
  109. Smith, K. J., and Thompson, A. R., 1981, Labeled factor IX kinetics in patients with hemophilia-B, Blood 58:625–629.PubMedGoogle Scholar
  110. Standring, R., Fears, R., and Ferres, H., 1988, The protective effect of acylation on the stability of APSAC (Eminase) in human plasma, Fibrinolysis 2:157–163.Google Scholar
  111. Staniforth, D. H., Smith, R. A. G., and Hibbs, M., 1983, Streptokinase and anisoylated streptokinase plasminogen complex—Their action on haemostasis in human volunteers, Eur. J. Clin. Pharmacol. 24:751–756.PubMedGoogle Scholar
  112. Steffens, G. J., Gunzler, W. A., Otting, F., Frankus, E., and Flohe, L., 1982, The complete amino acid sequence of low molecular mass urokinase from human urine, Hoppe-Seylers Z. Physiol. Chem. 363:1043–1058.PubMedGoogle Scholar
  113. Stern, D. M., Drillings, M., Nossel, H. L., Hurlet-Jensen, A., LaGamma, K., and Owen, J., 1983, Binding of factors IX and IXa to cultured vascular endothelial cells, Proc. Natl. Acad. Sci. USA 80:4119–4123.PubMedGoogle Scholar
  114. Stern, D. M., Knitter, G., Kisiel, W., and Nawroth, P. P., 1987, In vivo evidence of intravascular binding sites for coagulation factor IX, Br. J. Haematol. 66:227–232.PubMedGoogle Scholar
  115. Stump, D. C., Thienpont, M., and Collen, D., 1986a, Urokinase-related proteins in human urine. Isolation and characterization of single-chain urokinase (prourokinase) and urokinase-inhibitor complex, J. Biol. Chem. 261: 1267–1273.PubMedGoogle Scholar
  116. Stump, D. C., Lijnen, H. R., and Collen, D., 1986b, Purification and characterization of single-chain urokinase-type plasminogen activator from human cell cultures, J. Biol. Chem. 261: 1274–1278.PubMedGoogle Scholar
  117. Stump, D. C., Kieckens, L., De Cock, F., and Collen, D., 1987, Pharmacokinetics of single-chain forms of urokinase-type plasminogen activator, J. Pharmacol. Exp. Ther. 242:245–250.PubMedGoogle Scholar
  118. Tanswell, P., Seifried, E., Su, P. C., Feuerer, W., and Rijken, D. C., 1989, Pharmacokinetics and systemic effects of tissue-type plasminogen activator in normal subjects, Clin. Pharmacol. Ther. 46:155–162.PubMedGoogle Scholar
  119. Tanswell, P., Heinzel, G., Greischel, A., and Krause, J., 1990, Nonlinear pharmacokinetics of tissue-type plasminogen activator in three animal species and isolated perfused rat liver, J. Pharmacol. Exp. Ther. 255:318–324.PubMedGoogle Scholar
  120. Tebbe, U., Tanswell, P., Seifried, E., Feuerer, W., Scholz, K. H., and Herrmann, K. S., 1989, Single-bolus injection of recombinant tissue-type plasminogen activator in acute myocardial infarction, Am. J. Cardiol. 64:448–453.PubMedGoogle Scholar
  121. Thompson, A. R., Forrey, A. W., Gentry, P. A., Smith, K. J., and Harker, L. A., 1980, Human factor IX in animals: Kinetics from isolated, radiolabelled protein and platelet destruction following crude concentrate infusions, Br. J. Haematol. 45:329–342.PubMedGoogle Scholar
  122. Toole, J. J., Knopf, J. L., Wozney, J. M., Sultzman, L. A., Buecker, J. L., Pittman, D. D., Kaufman, R. J., Brown, E., Shoemaker, C., Orr, E. C., Amphlett, G. W., Foster, W. B., Coe, M. L., Knutson, G. J., Foss, D. W., and Hewick, R. M., 1984, Molecular cloning of a cDNA encoding human antihemophilic factor, Nature 312:342–347.PubMedGoogle Scholar
  123. Van der Werf, F., Vanhaecke, J., de Geest, H., Verstraete, M., and Collen, D., 1986, Coronary thrombolysis with recombinant single-chain urokinase-type plasminogen activator in patients with acute myocardial infarction, Circulation 74:1066–1070.PubMedGoogle Scholar
  124. Van der Werf, F., Jang, I. K., and Collen, D., 1987, Thrombolysis with recombinant human single-chain urokinase-type plasminogen activator (rscu-PA): Dose-response in dogs with coronary artery thrombosis, J. Cardiovasc. Pharmacol. 9:91–93.PubMedGoogle Scholar
  125. Verstraete, M., Bounameaux, H., de Cock, F., Van der Werf, F., and Collen, D., 1985, Pharmacokinetics and systemic fibrinolytic effects of recombinant human tissue-type plasminogen activator (rt-PA) in humans, J. Pharmacol. Exp. Ther. 235:506–512.PubMedGoogle Scholar
  126. Wallen, P., Ranby, M., Bergsdorf, N., and Kok, P., 1981, Purification and characterization of tissue plasminogen activator: On the occurrence of two different forms and the enzymatic properties, in: Progress in Fibrinolysis, Volume 5 (J. P. Davidson, I. M. Nilsson, and B. Astedt, eds.), Churchill Livingstone, Edinburgh, pp. 16–23.Google Scholar
  127. White, G. C., McMillan, C. W., Kingdon, H. S., and Shoemaker, C. B., 1989, Use of recombinant antihemophilic factor in the treatment of two patients with classic hemophilia, Lancet 320:166–170.Google Scholar
  128. Williams, W. J., 1983, Life span of plasma coagulation factors, in: Hematology (W. J. Williams, ed.), McGraw-Hill, New York, pp. 1230–1237.Google Scholar
  129. Wion, K. L., Kelly, D., Summerfield, J. A., Tuddenham, E. G., and Lawn, R. M., 1985, Distribution of factor VIII mRNA and antigen in human liver and other tissues, Nature 311:126–129.Google Scholar
  130. Wood, W. I., Capon, D. J., Simonsen, C. C., Eaton, D. L., Gitschier, J., Keyt, B., Seeburg, P. H., Smith, D. H., Hollingshead, P., Wion, K. L., Delwart, E., Tuddenham, E. G., Vehar, G. A., and Lawn, R. M., 1984, Expression of active human factor VIII from recombinant DNA clones, Nature 312:330–337.PubMedGoogle Scholar
  131. Working, P. K., and Cossum, P. A., 1991, Clinical and preclinical studies with recombinant human proteins: The effect of antibody production, in: Peptides, Peptoids and Proteins: Proceedings of the 5 th Pittsburgh Pharmacodynamics Conference (P. Gazonne, ed.), Harvey Wilkes Books, Cincinnati.Google Scholar
  132. Zauber, N. P., and Levin, J., 1977, Factor IX levels in patients with hemophilia B (Christmas disease) following transfusion with concentrates of factor IX or fresh frozen plasma (FFP), Medicine 56:213–224.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Paul A. Cossum
    • 1
  • Robert A. BaughmanJr.
    • 2
  1. 1.Research and DevelopmentEmisphere TechnologiesHawthorneUSA
  2. 2.Department of Preclinical DevelopmentIsis PharmaceuticalsCarlsbadUSA

Personalised recommendations