Potential at Infinity on Symmetric Spaces and Martin Boundary

  • Martine Babillot


For simply connected Riemannian manifolds with negatively pinched curvature, the Martin compactification has recently been identified with the compactification by the sphere at infinity [A-S], [Anc]. Such a general result does not hold in general when the curvature is allowed to vanish, and even for the most computable case of riemannian symmetric space of the non compact type with real rank ≥ 2, the topology of the Martin boundary is to a certain extent not well understood.


Harmonic Function Symmetric Space Solvable Group Convolution Operator Weyl Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Anc]
    A. Ancona, Negatively curved manifolds, elliptic operators and the Martin boundary, Ann. Math. 125 (1987), 495–536.MathSciNetMATHCrossRefGoogle Scholar
  2. [An1]
    J. Ph. Anker, A Basic inequality for scattering theory on Riemannian symmetric spaces of the non compact type, Amer. J. Math. 113 (1991), 391–398.MathSciNetMATHCrossRefGoogle Scholar
  3. [An2]
    J. Ph. Anker, Sharp estimates for some functions of the Laplacian on non compact symmetric spaces, preprint (1991).Google Scholar
  4. [Aze]
    R. Azencott, Espaces de Poisson des groupes localement compacts, Lect. Notes Math. 148 (1970), Springer-Verlag.Google Scholar
  5. [A-S]
    M. T. Anderson, R. Schoen, Positive harmonic functions on complete manifolds of negative curvature, Ann. Math. 121 (1985), 429–461.MathSciNetMATHCrossRefGoogle Scholar
  6. [Ba1]
    M. Babillot, Comportement asymptotique du mouvement brownien sur une variété homogène à courbure sectionnelle négative ou nulle, Ann. I.H.P 27 (1991), 61–90.MathSciNetMATHGoogle Scholar
  7. [Ba2]
    M. Babillot, A renewal theorem on solvable groups, asymptotics for Green kernels on homogeneous manifolds with non positive curvature and application to Martin boundary of symmetric spaces, preprint (1991).Google Scholar
  8. [Ba3]
    M. Babillot, Théorie du renouvellement pour des chaines semi-markoviennes transientes, Ann. I.H.P. 24 (1988), 507–569.MathSciNetMATHGoogle Scholar
  9. [Bo1]
    Ph. Bougerol, Comportement asymptotique des puissances de convolution sur un espace symétrique, Astérisque 74 (1984), Soc. Math. France.Google Scholar
  10. [Bo2]
    Ph. Bougerol, Théorème central limite local sur certains groupes de Lie, Ann. E.N.S. (4e sér.) 14 (1981), 403–432.MathSciNetMATHGoogle Scholar
  11. [Bo3]
    Ph. Bougerol, Comportement à l’infini du noyau potentiel sur un espace symétrique, Lect. Notes Math. 1096 (1984).Google Scholar
  12. [Cho]
    G. Choquet, Le théorème de représentation intégrale dans les ensembles convexes compacts, Ann. Inst. Fourier (Grenoble) 10 (1960), 333–344.MathSciNetMATHCrossRefGoogle Scholar
  13. [C-D]
    G. Choquet, J. Deny, Sur léquation de convolution μ = μ * σ, C. R. Acad. Sci. Paris 250 (1960), 779–780.Google Scholar
  14. [D-F]
    W. Doeblin, R. Fortet, Sur les chaines à liaison complètes, Bull. Soc. Math. France 65 (1937), 132–148.MathSciNetGoogle Scholar
  15. [Dyn]
    E. B. Dynkin, Non negative eigenfunctions of the Laplace Beltrami operator and Brownian motion on certain symmetric spaces, Dokl. Akad. Nauk. SSSR 141 (1961) and AMS Translations 72 (1968), 203–228.MathSciNetMATHGoogle Scholar
  16. [Eli]
    L. Elie, Comportement asymptotique du noyau potentiel sur les groupes de Lie, Ann. E.N.S. 4ème série 15 (1982), 257–364.MathSciNetMATHGoogle Scholar
  17. [E-O]
    P. Eberlein, B. O’Neil, Visibility manifolds, Pacific J. Math. 1973, 45–109.Google Scholar
  18. [Fu1]
    H. Furstenberg, A Poisson formula for semi simple Lie groups, Ann. Math. 77 (1963), 335–386.MathSciNetMATHCrossRefGoogle Scholar
  19. [Fu2]
    H. Furstenberg, Translation invariant cones of functions, Bull. A.M.S. 71 (1965), 271–326.MathSciNetMATHCrossRefGoogle Scholar
  20. [God]
    R. Godement, Une généralisation du théorème de la moyenne pour les fonctions harmoniques, C. R. Acad. Sci. Paris 234 (1952), 2137–2139.MathSciNetMATHGoogle Scholar
  21. [Gui]
    Y. Guivarc’h, Sur la représentation intégrale des fonctions propres du Laplacien sur un espace symétrique, Bull. Soc. Math. France (2ème sér.) 108 (1984), 373–392.MathSciNetGoogle Scholar
  22. [G-R]
    Y. Guivarc’h, A. Raugi, Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence, Z. Wahr. 69 (1985), 187–242.MathSciNetCrossRefGoogle Scholar
  23. [G-K]
    S. G. Gindikin, F. I. Karpelevich, The Plancherel measure for symmetric riemannian spaces of non positive curvature, Dokl. Acad. Nauk. SSSR, 145, (1962), 252–255; Soviet. Math. Dokl. 3, (1962) 962-965.Google Scholar
  24. [He1]
    S. Helgason, “Differential geometry, Lie groups and symmetric spaces,” Academic Press, 1978.Google Scholar
  25. [He2]
    S. Helgason, Groups and geometric analysis, Academic Press.Google Scholar
  26. [Kar]
    F. I. Karpelevich, The geometry of geodesies and the eigenfunctions of the Laplace Beltrami operator on symmetric spaces, Trudy Moskov Math. Obsc. 14 (1965), 48–185; Trans. Moscow Math. Soc. AMS MR 37 6876, 551-699.MATHGoogle Scholar
  27. [Kat]
    T. Kato, “Perturbation theory for linear operators,” Springer-Verlag, 1976.Google Scholar
  28. [Kor]
    A. Koranyi, Harmonic functions on symmetric spaces, in “Symmetric spaces,” Boothby and Weiss eds., New York, 1972.Google Scholar
  29. [Lep]
    E. Lepage, Théorèmes limites pour des produits de matrice aléatoires, Lect. Notes Math. 928 (1982), 258–303.MathSciNetCrossRefGoogle Scholar
  30. [Mar]
    R. S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc. 49 (1941), 1137–172.Google Scholar
  31. [Nor]
    Norman, “Markov processes and learning models,” Academic Press, 1982.Google Scholar
  32. [Ols]
    M. A. Olshanetskii, Martin Boundary for the Laplace Beltrami operator on a Riemannian space of non positive curvature, Usp. Math. Nauk. 24 n. 6 (1969), 189–190.Google Scholar
  33. [Tay]
    J. C. Taylor, same proceedings.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Martine Babillot
    • 1
  1. 1.Laboratoire de ProbabilitésUniversité Paris 6Paris Cedex 05France

Personalised recommendations