Skip to main content

Abstract

Many proofs in graph theory use (spanning) trees which preserve a certain property of the graph. We discuss some recent results on spanning trees with the same shape (more precisely, the same end structure) as the graph and on transient subtrees. A general sufficient condition, in terms of isoperimetric inequalities, for a transient subtree is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.I. Cartwright, P.M. Soardi, W. Woess, Martin and end compactifications of non locally finite graphs, Trans. Amer. Mat. Soc. (to appear).

    Google Scholar 

  2. P.G. Doyle, J.L. Snell, “Random walks and electric networks,” Math. Ass. of America, Washington, D.C., 1984.

    MATH  Google Scholar 

  3. S. Even, “Graph Algorithms,” Pitman, London, 1979.

    Google Scholar 

  4. J.L. Fernandez, On the existence of Green’s functions in Riemannian manifolds, Proc. Amer. Math. Soc. 96 (1986), 284–286.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Freudenthal, Über die Enden diskreter Räume und Gruppen, Comment. Math. Helv. 1 (1944), 1–38.

    Article  Google Scholar 

  6. A.A. Grigor’yan, The existence of positive fundamental solutions of the Laplace equation on Riemannian manifolds (Russian), Mat. Sb. 128 (170) (1985), 354–363.

    MathSciNet  Google Scholar 

  7. R. Halin, Über unendliche Wege in Graphen, Math. Ann. 157 (1985), 125–137.

    Article  MathSciNet  Google Scholar 

  8. H.A. Jung, Wurzelbäume und unendliche Wege in Graphen, Math. Nachr. 41 (1969), 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Kanai, Rough isometries and parabolicity of Riemannian manifolds, J. Math. Soc. Japan (1976), 227-238.

    Google Scholar 

  10. S. Markvorsen, S. McGuinness, C. Thomassen, Transient random walks on graphs and metric spaces with applications to hyperbolic surfaces, Proc. London Math. Soc. (to appear).

    Google Scholar 

  11. C. Nebbia, Amenability and Kunze-Stein property for groups acting on a tree, Pacific J. Math. 135 (1988), 371–180.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Osserman, Global properties of classical minimal surfaces, Duke Math. J. 32 (1965), 565–53.

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Pays and A. Valette, Sous-groupes libres dans les groupes d’automorphismes d’arbres, (to appear).

    Google Scholar 

  14. M.A. Picardello and W. Woess, Martin boundaries of random walks: ends of trees and groups, Trans. Amer. Math. Soc. 302 (1987), 185–205.

    Article  MathSciNet  MATH  Google Scholar 

  15. N. Polat, Aspects topologiques de la séparation dans les graphes infinit, Math. Z. 165 (1979), 73–100 and 171-191.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Seymour and R. Thomas, (to appear).

    Google Scholar 

  17. C. Thomassen, Infinite connected graphs with no end-preserving spanning trees, J. Combin. Th., Ser. B (to appear).

    Google Scholar 

  18. C. Thomassen, Isoperimetric inequalities and transient random walks on graphs, Ann. Prob. (to appear).

    Google Scholar 

  19. J. Tits, A theorem of Lie-Kolchin for trees, in “Contributions to Algebra: a collection of papers dedicated to Ellis Kolchin,” Academic Press, 1977, pp. 377-388.

    Google Scholar 

  20. N.T. Varopoulos, Isoperimetric inequalities and Markov Chains, J. Funct. Analysis 63 (1985), 215–239.

    Article  MathSciNet  MATH  Google Scholar 

  21. W. Woess, Amenable group actions on infinite graphs, Math. Ann. 284 (1989), 251–265.

    Article  MathSciNet  MATH  Google Scholar 

  22. W. Woess, Random walks on infinite graphs and groups-A survey on selected topics, manuscript 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thomassen, C. (1992). Trees, Ends, and Transience. In: Picardello, M.A. (eds) Harmonic Analysis and Discrete Potential Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2323-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2323-3_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2325-7

  • Online ISBN: 978-1-4899-2323-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics