Potential Theory on Non-Unimodular Groups

  • N. Th. Varopoulos

Abstract

Let G be a connected Lie group and let X 1,... X k be left invariant fields (i.e. X f g = (X f) g , f g (x) = f(gx)) that generate the Lie algebra. We can consider then \(\Delta = - X_1^2 - X_2^2 \cdots - X_k^2 \) and T t = e−tΔ which is a convolution semigroup since it commutes with the left action of G. It follows that if we denote by d g the left Haar measure of G, we have \(T_t f(x) = \int\limits_G {f(y)\phi _t (y^{ - 1} x)d^l y} \), cf. [1]. The behaviour of ϕ t as t → ∞ when G is unimodular, i.e. when D g = dg (= the right Haar measure up to multiplicative constant), is well understood, cf. [1], [2].

Keywords

Convolution Nash 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    N.Th. Varopoulos, J. Funct. Anal. 76 (1988), 346–410.Google Scholar
  2. [2].
    N.Th. Varopoulos, Proceedings I.C.M. 1990, Kyoto.Google Scholar
  3. [3].
    Ph. Bougerol, Ann. Inst. Henri Poincaxé XIX (1983), 369–391.MathSciNetGoogle Scholar
  4. [4].
    N. Bourbaki, Fascicule XXIX, Ch. 7, “Integration”, Hermann, Paris.Google Scholar
  5. [5].
    V.S. Varadarajan, “Lie groups, Lie algebras and their representations,” Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  6. [6].
    N.Th. Varopoulos, J. Funct. Anal. 86 (1989), 19–40.MathSciNetMATHCrossRefGoogle Scholar
  7. [7].
    W. Feller, “An introduction to probability theory and its applications,” I, 3rd edition, Wiley.Google Scholar
  8. [8].
    F.B. Knight, Essentials of Brownian motion and Diffusion, Math. Surveys, Amer. Math. Soc. 18 (1981).Google Scholar
  9. [9].
    N.Th. Varopoulos, C.R. Acad. Sci. Paris, 301 (sér. I) (1985), 865–868.MathSciNetMATHGoogle Scholar
  10. [10].
    N.Th. Varopoulos, J. Funct. Anal. 63 (1985), 240–260.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • N. Th. Varopoulos
    • 1
  1. 1.Université Paris 6Paris Cedex 05France

Personalised recommendations