Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 292))

Abstract

Several recent works have been devoted to the relationship between transport properties and dynamical chaos in systems of classical statistical mechanics [1, 2]. Since the seminal works by Krylov and Sinai [3], we know that the hard sphere gas presents the property of dynamical instability at the microscopic level of its trajectories. Because of the defocusing character of the collisions, nearby trajectories exponentially separate, a remarkable and general phenomenon which is characterized by the Lyapunov exponents, i. e. the orbit separation rates [4]. Stretching of phase space volumes is followed by folding and dynamical randomness results from the exponential instability. The degree of randomness of a time process is evaluated by the entropy per unit time originally introduced by Shannon to characterize a source of information and thereafter applied to dynamical systems by Kolmogorov and Sinai [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. P. Morris, D. J. Evans, E. G. D. Cohen, and H. van Beijeren, Phys. Rev. Lett. 62, 1579 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  2. D. J. Evans, E. G. D. Cohen, and M. P. Morris, Phys. Rev. A 42, 5990 (1990).

    Article  ADS  Google Scholar 

  3. P. Gaspard and G. Nicolis, Phys. Rev. Lett. 65, 1693 (1990).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. N. N. Krylov, Works on the Foundations of Statistical Mechanics, Princeton University Press (1979); Ya. G. Sinai, ibid. p. 239.

    Google Scholar 

  5. J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  6. C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, University of Illinois Press, Urbana (1949)

    MATH  Google Scholar 

  7. A. N. Kolmogorov, Dokl. Acad. Sci. USSR 119:5, 861 (1958); 124:4, 754 (1959); Ya. G. Sinai, Dokl. Acad. Sci. USSR 124:4, 768 (1959).

    MathSciNet  MATH  Google Scholar 

  8. A. J. Lieberman and A. J. Lichtenberg, Regular and Stochastic Motion, Springer, New York (1983).

    MATH  Google Scholar 

  9. H. A. Lorentz, Proc. Roy. Acad. Amst. 7, 438, 585, 684 (1905).

    Google Scholar 

  10. L. A. Bunimovich and Ya. G. Sinai, Commun. Math. Phys. 78, 247 (1980); 78, 479 (1980)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. L. A. Bunimovich, Ya. G. Sinai, and N. I. Chernov, Russ. Math. Surveys 45, 105 (1990).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. J. Machta and R. Zwanzig, Phys. Rev. Lett. 50, 1959 (1983); J. Stat. Phys. 32, 555 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  13. M. S. Green, J. Chem. Phys. 20, 1281 (1952); 22, 398 (1954)

    Article  MathSciNet  ADS  Google Scholar 

  14. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  15. P. Billingsley, Ergodic Theory and Information, Wiley, New York (1965).

    MATH  Google Scholar 

  16. P. Gaspard and S. A. Rice, J. Chem. Phys. 90, 2225, 2242, 2255 (1989) 91, 3279 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  17. H. A. Kramers, Physica 7, 284 (1940)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. N. G. van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam (1981).

    MATH  Google Scholar 

  19. D. J. Evans, W. G. Hoover, B. H. Failor, B. Moran, and A. J. C. Ladd, Phys. Rev. A 28, 1016 (1983)

    Article  ADS  Google Scholar 

  20. S. Nosé, Mol. Phys. 52, 255 (1984)

    Article  ADS  Google Scholar 

  21. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).

    Article  ADS  Google Scholar 

  22. L. Bauer and E. L. Reiss, SIAM J. Appl. Math. 35, 508 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Kantz and P. Grassberger, Physica D 17, 75 (1985).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. T. Bohr and D. Rand, Physica D 25, 387 (1987)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. T. Bohr and T. Tel, in: Directions in Chaos, Vol. II, Ed. U. Bai-lin Hao, World Scientific, Singapore (1988) pp. 194–237

    Chapter  Google Scholar 

  26. T. Tel, J. Phys. A: Math. Gen. 22, L691 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  27. Z. Kovács and T. Tel, Phys. Rev. Lett. 64, 1617 (1990).

    Article  ADS  Google Scholar 

  28. D. Bessis, G. Paladin, G. Turchetti, and S. Vaienti, J. Stat. Phys. 51, 109 (1988).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Ya. G. Sinai, Russ. Math. Survey 25, 137 (1970)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. L. A. Bunimovich, Commun. Math. Phys. 65, 295 (1979).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. D. Ruelle, Thermodynamic Formalism, Addison-Wesley, Reading, MA (1978).

    MATH  Google Scholar 

  32. T. C. Hasley, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, Phys. Rev. A 33, 1141 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  33. S. W. McDonald, C. Grebogi, E. Ott, and J. A. Yorke, Physica D 17, 125 (1985).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. P. Gaspard and G. Nicolis, Physicalia Magazine (J. Belg. Phys. Soc.) 7, 151 (1985).

    Google Scholar 

  35. P. R. Baldwin, J. Phys. A: Math. Gen. 24, L941 (1991).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. P. Cvitanović, J.-P. Eckmann, and P. Gaspard, Transport properties of the Lorentz gas in terms of periodic orbits, preprint (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gaspard, P., Baras, F. (1992). Dynamical Chaos Underlying Diffusion in the Lorentz Gas. In: Mareschal, M., Holian, B.L. (eds) Microscopic Simulations of Complex Hydrodynamic Phenomena. NATO ASI Series, vol 292. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2314-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2314-1_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2316-5

  • Online ISBN: 978-1-4899-2314-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics