Molecular Theory of Mesomorphic Polymers

  • A. Ten Bosch
  • P. Maissa
  • P. Sixou
Part of the Polymer Science and Technology book series (POLS, volume 28)


Molecular theories of mesomorphic polymers may serve to give a better insight into the mechanisms involved in the formation of ordered phases in macromolecular liquids. The importance of parameters such as chain length, chain flexibilitychrw(133) can be explored and the results used in synthesis of new systems with well-defined characteristics. Studies of the influence of solvents on the mesomorphic phase transition and the possibility of ordering by external fields (electric, magnetic, flow) are problems of technological interest in the spinning of fibers and in the formation of new polymer blends.


Persistence Length Chain Flexibility Liquid Crystalline Polymer Elongational Flow Exclude Volume Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.J. Flory, Proc. Roy. Soc. A 234, 60 (1956).Google Scholar
  2. 2.
    P. Pincus, P.G. de Gennes, J.Polym. Sci. 65, 85, (1978)Google Scholar
  3. 3.
    N. Saito, K. Takahasi, Y. Yunoki, J. Phys. Soc. Jap., 22, 219, (1967).CrossRefGoogle Scholar
  4. 4.
    L. Onsager, Ann NY Acad. Sci., 51, 627, (1949).ADSCrossRefGoogle Scholar
  5. 5.
    P.J. Flory, Proc. Roy. Soc. A234, 73, (1956).Google Scholar
  6. 6.
    M.A. Cotter, Mol. Cryst. Liq. Cryst. 97, 29, (1983).CrossRefGoogle Scholar
  7. 7.
    J.G. Ypma, G. Vertogen, Phys. Rev. A 17, 1490, (1978).ADSCrossRefGoogle Scholar
  8. 8.
    M. Nakagawa, T. Akahaa e, J. Phys. Soc. Jap., 52, 399 (1983).CrossRefGoogle Scholar
  9. 9.
    W. Maier, A. Saupe, Z. Naturforschung 14e, 882 (1959).ADSGoogle Scholar
  10. 10.
    R.L. Humphries, P.G. James, G.R. Luckhurst Symp. Faraday Soc. 5, 107 (1971).Google Scholar
  11. 11.
    A. Miyake, Y. Hoshino, J. Phys. Soc. Jap. 52, 399 (1983).CrossRefGoogle Scholar
  12. 12.
    S. Dayan, P. Maissa, M.J. Vellutini, P. Sixou, Polymer 23, 800, (1982).CrossRefGoogle Scholar
  13. 13.
    F. Fried, G. Searby, M.J. Seurin, S. Dayan, P. Sixou, Polymer, 23, 1755, (1982).CrossRefGoogle Scholar
  14. 14.
    S. Dayan, P. Maïssa, M.J. Vellutini, P. Sixou, J. Polym. Sci., 20, 33 (1982).Google Scholar
  15. 15.
    F. Jähnig, J. Chem. Phys. 70, 3279 (1979).ADSCrossRefGoogle Scholar
  16. 16.
    K.F. Freed, Adv. Chem. Phys. 22, 1 (1972).Google Scholar
  17. 17.
    A. Ten Bosch, P. Maïssa, P. Sixou, J. Chem. Phys., 79, 3462 (1983).ADSCrossRefGoogle Scholar
  18. 18.
    A. Ten Bosch, P. Maïssa, P. Sixou, J. de Phys. (France) 44, 105, (1983).Google Scholar
  19. 19.
    P. Maïssa, A. Ten Bosch, P. Sixou, J. Chem. Phys. (submitted).Google Scholar
  20. 20.
    A. Ten Bosch, P. Maissa, P. Sixou, Phys. Letters 94A, 298 (1983).ADSCrossRefGoogle Scholar
  21. 21.
    M.J. Seurin, A. Ten Bosch, P. Sixou, Polymer Bulletin 10, 438, (1983).CrossRefGoogle Scholar
  22. 22.
    M.J. Seurin, A. Ten Bosch, P. Sixou, Polymer Bulletin 9, 450, (1983).Google Scholar
  23. 23.
    P. Maissa, A. Ten Bosch, P. Sixou, J. Polym. Sci., Polymer Letters Ed. 21, 757, (1983).Google Scholar
  24. 24.
    G. Maret, Liquid Crystalline Polymers, Washington, 1983.Google Scholar
  25. 25.
    G. Marrucci, Mol. Cryst. Liq. Cryst. 72, 153, (1982).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • A. Ten Bosch
    • 1
  • P. Maissa
    • 1
  • P. Sixou
    • 1
  1. 1.Laboratoire de Physique de la Matière CondenséeNice CedexFrance

Personalised recommendations