Skip to main content

Radio Frequency Field-Induced Effects in Ferromagnetic Materials

  • Chapter
Mössbauer Spectroscopy Applied to Inorganic Chemistry

Part of the book series: Modern Inorganic Chemistry ((MICE,volume 3))

Abstract

The possibility of influencing the Mössbauer effect with an external radio frequency (rf) field was recognized in the early years of the “Mössbauer era.” It was found that the high-frequency piezoelectric vibration of a Mössbauer single-line source, induced by a quartz transducer, results in a modulation of the Mössbauer γ-radiation that may be observed as sidebands in the spectra.1 In this experiment, the source as a whole was vibrated mechanically. However, when the rf magnetic field is applied to a ferromagnetic magnetostrictive material, each atom is forced to vibrate with the external field frequency and the spectrum then consists of the original carrier hyperfine split pattern and the infinite set of satellite lines formed at the positions determined by the rf field frequency. These satellite lines, called the rf sidebands, were first observed for metallic iron.2–5 Soon a new effect was discovered, the so-called rf collapse effect.5,6 It occurs when the magnetic rf field forces the fast reversal of the sample magnetization. This results in the oscillation of the magnetic hyperfine field at the iron nuclei in response to the applied rf field. When the frequency of the rf field is larger than the Larmor precession frequency, the magnetic hyperfine field averages to zero, and in the Mössbauer spectrum a collapse of the entire Zeeman pattern to a single line or a quadrupole doublet is observed. This effect was studied for various soft ferromagnetic alloys and ferrites.5–11

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.L. Ruby and D.I. Bolef, Phys. Rev. Lett. 5, 5 (1960).

    Article  Google Scholar 

  2. N.D. Heiman, L. Pfeiffer, and J.C. Walker, Phys. Rev. Lett. 21, 93 (1968).

    Article  CAS  Google Scholar 

  3. G. Asti, G. Albanese, and C. Bucci, Phys. Rev. 184, 260 (1969).

    Article  CAS  Google Scholar 

  4. L. Pfeiffer, N.D. Heiman, and J.C. Walker, Phys. Rev. B B6, 74 (1972).

    Article  Google Scholar 

  5. L. Pfeiffer Mössbauer Effect Methodology, Vol. 7, I.J. Gruverman, ed., Plenum Press, New York, 1972, pp. 263–298.

    Google Scholar 

  6. L. Pfeiffer, J. Appl. Phys. 42, 1725 (1971).

    Article  CAS  Google Scholar 

  7. G. Albanese and G. Asti, Nuovo Cimento 6B, 153 (1971).

    Google Scholar 

  8. J.V. Baldokhin, V.A. Makarov, E.F. Makarov, and V.A. Povitskii, Phys. Status Solidi A 27, 265 (1975).

    Article  CAS  Google Scholar 

  9. M. Kopcewicz, Solid State Commun. 19, 719 (1976).

    Article  CAS  Google Scholar 

  10. M. Kopcewicz, Phys. (Paris), Colloq. 37(C6), 107 (1976).

    Google Scholar 

  11. M. Kopcewicz, Phys. Status Solidi A 46, 675 (1978).

    Article  CAS  Google Scholar 

  12. M. Kopcewicz and A. Kotlicki, J. Phys. Chem. Solids 41, 631 (1980).

    Article  CAS  Google Scholar 

  13. M. Kopcewicz, H.G. Wagner, and U. Gonser, Nucl. Instrum. Methods 199, 163 (1982).

    Article  CAS  Google Scholar 

  14. M. Kopcewicz, H.G. Wagner, and U. Gonser, J. Magn. Magn. Mater. 51, 225 (1985).

    Article  CAS  Google Scholar 

  15. M. Kopcewicz, H.G. Wagner, and U. Gonser, Solid State Commun. 48, 531 (1983).

    Article  CAS  Google Scholar 

  16. M. Kopcewicz, H.G. Wagner, and U. Gonser, Hyperfine Interactions 15/16, 729 (1983).

    Article  Google Scholar 

  17. M. Kopcewicz, H.G. Wagner, and H. Fischer, in Rapidly Quenched Metals, S. Steeb and H. Warlimont, eds., Elsevier, Amsterdam, 1985, pp. 1219–1221.

    Google Scholar 

  18. M. Kopcewicz, H.G. Wagner, and U. Gonser, Hyperfine Interactions 27, 413 (1986).

    Article  CAS  Google Scholar 

  19. M. Kopcewicz, H.G. Wagner, and U. Gonser, J. Phys. (Paris), Colloq. 46(C8), 151 (1985).

    Article  Google Scholar 

  20. M. Kopcewicz, H.G. Wagner, and U. Gonser, J. Phys. F. 16, 929 (1986).

    Article  CAS  Google Scholar 

  21. M. Kopcewicz, U. Gonser, and H.G. Wagner, Appl. Phys. 23, 1 (1980).

    Article  CAS  Google Scholar 

  22. M. Kopcewicz, H.G. Wagner, and U. Gonser, J. Magn. Magn. Mater. 40, 139 (1983).

    Article  CAS  Google Scholar 

  23. J.K. Srivastava, in Advances in Mössbauer Spectroscopy, B.V. Thosar, P.K. Iyengar, J.K. Srivastava, and S.C. Bhargava, eds., Elsevier, Amsterdam, 1983, pp. 761–813.

    Google Scholar 

  24. T.E. Cranshaw and P. Reivari, Proc. Phys. Soc. 90, 1059 (1967).

    Article  CAS  Google Scholar 

  25. L. Tsankov, J. Phys. A 14, 275 (1981).

    Article  CAS  Google Scholar 

  26. S.L. Ruby, R.S. Preston, C.E. Skov, and B.J. Zabransky, Phys. Rev. A 8, 59 (1973).

    Article  Google Scholar 

  27. J.C. Walker and L. Pfeiffer, in Mössbauer Effect Methodology, Vol. 6, I.J. Gruverman, ed., Plenum Press, New York, 1971, p. 123.

    Google Scholar 

  28. N.D. Heiman, J.C. Walker, and L. Pfeiffer, Phys. Rev. 184, 281 (1969).

    Article  CAS  Google Scholar 

  29. D.O. Smith, in Magnetism, Vol. 3, G.T. Rado and H. Suhl, eds., Academic Press, New York, 1963, Chapter 10.

    Google Scholar 

  30. E.M. György, in Magnetism, Vol. 3, G.T. Rado and H. Suhl, eds., Academic Press, New York, 1963, Chapter 11.

    Google Scholar 

  31. M.H. Kryder and F.B. Humphrey, J. Appl. Phys. 40, 2469 (1969).

    Article  CAS  Google Scholar 

  32. M.H. Kryder and F.B. Humphrey, J. Appl. Phys. 41, 1130 (1970).

    Article  CAS  Google Scholar 

  33. E.M. György, J. Appl. Phys. 31, 110S (1960).

    Article  Google Scholar 

  34. F.B. Humphrey, J. Appl. Phys. 35, 911 (1964).

    Article  Google Scholar 

  35. A. Abragam, in The Principles of Nuclear Magnetism, Clarendon Press, Oxford, 1967, p. 528.

    Google Scholar 

  36. S. Olariu, I. Popescu, and C.B. Collins, Phys. Rev. C 23, 1007 (1981).

    Article  CAS  Google Scholar 

  37. A.V. Mitin, Sov. Phys. Dokl. 15, 827 (1971).

    Google Scholar 

  38. G.J. Perlow, Phys. Rev. 172, 319 (1968).

    Article  CAS  Google Scholar 

  39. M. Kopcewicz, A. Kotlicki, and M. Szefer, Phys. Status Solidi B 72, 701 (1975).

    Article  CAS  Google Scholar 

  40. L. Pfeiffer, in AIP Conference Proceedings No. 5, Magnetism and Magnetic Materials, C.D. Graham, Jr. and J.J. Rhyne, eds., American Institute of Physics, New York, 1972, pp. 796–800.

    Google Scholar 

  41. C.L. Chien and J.C. Walker, Phys. Rev. B 13, 1876 (1976).

    Article  CAS  Google Scholar 

  42. I.A. Dubovtsev, P.S. Zyryanov, and N.P. Filipova, Sov. Phys. JETP 38, 509 (1974).

    Google Scholar 

  43. M. Gearttner, W.D. Wallace, and B.W. Maxfield, Phys. Rev. 184, 702 (1969).

    Article  Google Scholar 

  44. E. Dobbs, J. Phys. Chem. Solids 31, 1657 (1970).

    Article  CAS  Google Scholar 

  45. R. Hesegawa and CL. Chien, Solid State Commun. 18, 913 (1976).

    Article  Google Scholar 

  46. L. Pfeiffer and C.P. Lichtenwalner, Rev. Sci. Instrum. 44, 1500 (1973).

    Article  CAS  Google Scholar 

  47. G. Albanese, G. Asti, and S. Rinaldi, Nuovo Cimento Lett. 4, 220 (1972).

    Article  Google Scholar 

  48. G. Karczewski, M. Kopcewicz, and A. Kotlicki, J. Phys. (Paris), Colloq. 41(C1), 217 (1980).

    Article  Google Scholar 

  49. M. Chmielowski, A. Kotlicki, and A. Wojtasiewicz, Hyperfine Interactions 10, 1132 (1981).

    Google Scholar 

  50. A. Gupta, Phys. Rev. B 24, 2362 (1981).

    Article  CAS  Google Scholar 

  51. M. Kopcewicz, Phys. Status Solidi A 60, 43 (1980).

    Article  CAS  Google Scholar 

  52. V.S. Indurkar, J.K. Srivastava, and R. Vijayaraghavan, Hyperfine Interactions 35, 1053 (1987).

    Article  CAS  Google Scholar 

  53. A. Kotlicki, Hyperfine Interactions 10, 1167 (1981).

    Article  CAS  Google Scholar 

  54. M. Kopcewicz, M. El Zayat, and U. Gonser, Hyperfine Interactions 42, 1123 (1988).

    Article  CAS  Google Scholar 

  55. M. Kopcewicz and G. Karczewski, J. Phys. (Paris), Colloq. 41(C1), 215 (1980).

    Google Scholar 

  56. M. Kopcewicz, J. Phys. Chem. Solids 42, 77 (1981).

    Article  CAS  Google Scholar 

  57. M. Kopcewicz, H. Engelmann, S. Stenger, G.V. Smirnov, U. Gonser, and H.G. Wagner, Appl. Phys. A44, 131 (1987).

    CAS  Google Scholar 

  58. O.S. Kolotov, V.A. Pogozhev, R.V. Telesin, G.V. Smirnov, Yu.V. Shvydko, S. Kadeckova, M. Kotrbova, and J. Novak, Phys. Status Solidi A 72, K197 (1982).

    Article  CAS  Google Scholar 

  59. G. Longworth, in Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 2, G.J. Long, ed., Plenum Press, New York, 1987, Chapter 7.

    Google Scholar 

  60. M. Kopcewicz, Hyperfine Interactions. 40, 77 (1988).

    Article  CAS  Google Scholar 

  61. M. Eibschütz, M.E. Lines, H.S. Chen, and T. Masumoto, J. Phys. F 14, 505 (1984).

    Article  Google Scholar 

  62. G. Le Caer, J.M. Cadogan, R.A. Brand, J.M. Dubois, and HJ. Guntherodt, J. Phys. F 14, L73 (1984).

    Article  Google Scholar 

  63. S.M. Fries, H.G. Wagner, S.J. Campbell, U. Gonser, N. Blaes, and P. Steiner, J. Phys. F 15, 1179 (1985).

    Article  CAS  Google Scholar 

  64. M. Maurer, A. Mehdaoui, and J.M. Friedt, J. Phys. (Paris), Colloq. 46(C8), 217 (1985).

    Article  Google Scholar 

  65. M. Kopcewicz, S.M. Fries, and U. Gonser, Z. Phys. Chem. N.F. 157, 133 (1988).

    Article  CAS  Google Scholar 

  66. J. Hesse and A. Rübartsch, J. Phys. E 7, 526 (1974).

    Article  Google Scholar 

  67. G. Le Caer and J.M. Dubois, J. Phys. E 12, 1083 (1979).

    Article  Google Scholar 

  68. M. Kopcewicz, M. El Zayat, and U. Gonser, Hyperfine Interactions 42, 1119 (1988).

    Article  CAS  Google Scholar 

  69. M. Kopcewicz, M. El Zayat, and U. Gonser, J. Magn. Magn. Mater. 72, 119 (1988).

    Article  CAS  Google Scholar 

  70. J.M. Dubois and G. Le Caer, Acta Metall. 32, 2101 (1984).

    Article  CAS  Google Scholar 

  71. I. Vincze and F. van der Woude, J. Non-Crystal. Solids 42, 499 (1980).

    Article  CAS  Google Scholar 

  72. A. Gupta, S. Lal, and R.P. Verma, J. Magn. Magn. Mater. 44, 329 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kopcewicz, M. (1989). Radio Frequency Field-Induced Effects in Ferromagnetic Materials. In: Long, G.J., Grandjean, F. (eds) Mössbauer Spectroscopy Applied to Inorganic Chemistry. Modern Inorganic Chemistry, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2289-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2289-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2291-5

  • Online ISBN: 978-1-4899-2289-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics