The Role of the Mauthner Cell in Fast-Starts Involving Escape in Teleost Fishes

  • Robert C. Eaton
  • John T. Hackett

Abstract

The commonly observed “tailflip” startle response is one of the most characteristic behavior patterns of bony and cartilagenous fishes and amphibians. In the most familiar example, the behavior pattern is readily elicited in fish following a tap on the side of their aquarium. However, data from behavioral studies show that the response is an effective escape movement that enables the animal to avoid sudden attacks by predators. An example of this is shown in Figure 1 in which a small cyprinid fish uses a common startle response movement pattern to avoid a strike by a piscivorous snake.

Keywords

Fatigue Depression Attenuation Cobalt Glycine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aljure, E., Day, J. W., and Bennett, M. V. L., 1980, Postsynaptic depression of Mauthner cell-mediated startle reflex, a possible contributor to habituation, Brain Res. 188: 261 – 268.PubMedCrossRefGoogle Scholar
  2. Auerbach, A. A., and Bennett, M. V. L., 1969a, Chemically mediated transmission at a giant synapse in the central nervous system of a vertebrate, J. Gen. Physiol. 53: 183 – 210.PubMedCrossRefGoogle Scholar
  3. Auerbach, A. A., and Bennett, M. V. L., 19696, A rectifying electrotonic synapse in the central nervous system of a vertebrate, J. Gen Physiol. 53: 211 – 237.Google Scholar
  4. Barlow, G., 1968, Modal action patterns, in: How Animals Communicate ( T. S. Seboek, ed.), Indiana University Press, Bloomington, pp. 98 – 134.Google Scholar
  5. Bartelmez, G. M., 1915, Mauthner’s cell and the nucleus motorius tegmenti, J. Comp. Neurol. 25: 87 – 128.CrossRefGoogle Scholar
  6. Bennett, M. V. L., 1977, Electrical transmission: A functional analysis and comparison to chemical transmission, in: Handbook of Physiology, Sec. 1, The Nervous System, ( E. R. Kandel, ed.), American Physiological Society, Bethesda, Maryland, pp. 357 – 416.Google Scholar
  7. Bennett, M. V. L., and Day, J. W., 1981, Mauthner fiber reflex: Descending activity mediates “habituation” of the response to Mauthner fiber stimulation, Soc. Neurosci. Abstr. 7: 843.Google Scholar
  8. Blaxter, J. H. S., and Hoss, D. E., 1981, Startle response in herring: The effect of sound stimulus frequency, size of fish and selective interference with the acoustico-lateralis system, J. Mar. Biol. Assoc. U. K. 61: 871 – 879.CrossRefGoogle Scholar
  9. Blaxter, J. H. S., Gray, J. A. B., and Denton, E. J., 1981, Sound and startle responses in herring shoals, J. Mar. Biol. Assoc. U. K. 61: 851 – 869.CrossRefGoogle Scholar
  10. Bullock, T. H., 1981, Comparisons of the electric and acoustic sense and their central processing, in: Hearing and Sound Communication in Fishes (W. N. Tavolga, A. N. Popper, and R. R. Fay, eds.), Springer-Verlag, New York, pp. 525 – 570.CrossRefGoogle Scholar
  11. Celio, M. R., Gray, E. B., Yasargil, G. M., 1979, Ultrastructure of the Mauthner axon collateral and its synapses in the goldfish spinal cord, J. Neurocytol. 8: 19 – 30.PubMedCrossRefGoogle Scholar
  12. Cochran, S. L., Hackett, J. T., and Brown, D. L., 1980, The anuran Mauthner cell and its synaptic bed, Neuroscience 5: 1629 – 1646.PubMedCrossRefGoogle Scholar
  13. Diamond, J., 1968, The activation and distribution of GABA and 1-glutamate receptors on goldfish Mauthner neurons; an analysis of dendritic remote inhibition, J. Physiol. (London) 194: 669 – 723.Google Scholar
  14. Diamond, J., 1971, The Mauthner cell, in: Fish Physiology, Vol. 5 ( W. S. Hoar and D. J. Randall, eds.), Academic Press, New York, pp. 265 – 346.Google Scholar
  15. Diamond, J., Roper, S., Yasargil, G. M., 1973, The membrane effects, and sensitivity to strychnine of neural inhibition of the Mauthner cell, and its inhibition by glycine and GABA, J. Physiol. (London) 232: 87 – 111.Google Scholar
  16. Dijkgraff, S., 1963, The functioning and significance of the lateral-line organs, Biol. Rev. 38: 51 – 105.CrossRefGoogle Scholar
  17. Dill, L. M., 1974, The escape response of the zebra danio (Brachydanio rerio). I. The stimulus for escape, Anim. Behay. 22: 711 – 722.CrossRefGoogle Scholar
  18. Eaton, R. C., 1983, Is the Mauthner cell a vertebrate command neuron? A neuroethological perspective on an evolving concept, in: Advances in Vertebrate Neuroethology ( J.-P. Ewert, R. R. Capranica, and D. Ingle, eds.), Plenum Press, New York, pp. 629 – 636.CrossRefGoogle Scholar
  19. Eaton, R. C., and Bombardieri, R. A., 1978, Behavioral functions of the Mauthner neuron, in: Neurobiology of the Mauthner Cell ( D. S. Faber and H. Korn, eds.), Raven Press, New York, pp. 221 – 244.Google Scholar
  20. Eaton, R. C., and Farley, R. D., 1975, Mauthner neuron field potential in newly hatched larvae of the zebrafish, J. Neurophysiol. 38: 502 – 512.PubMedGoogle Scholar
  21. Eaton, R. C., and Kimmel, C. B., 1980, Directional sensitivity of the Mauthner cell system to vibrational stimulation in zebrafish larvae, J. Comp. Physiol. 140: 337 – 342.CrossRefGoogle Scholar
  22. Eaton, R. C., and Nissanov, J., 1984, A review of Mauthner-initiated escape behavior and its possible role in hatching in the developing zebrafish, Brachydanio rerio, Environ. Biol. Fish. (in press).Google Scholar
  23. Eaton, R. C., Farley, R. D., Kimmel, C. B., and Schabtach, E., 1977a, Functional development in the Mauthner cell system of embryos and larvae of the zebra fish, J. Neurobiol. 8: 151 – 172.PubMedCrossRefGoogle Scholar
  24. Eaton, R. C., Bombardieri, R. A., and Meyer, D., 1977b, The Mauthner initiated startle response in teleost fish, J. Exp. Biol. 66: 65 – 81.PubMedGoogle Scholar
  25. Eaton, R. C., Lavender, W. A., and Wieland, C. M., 1981, Identification of Mauthnerinitiated response patterns in goldfish: Evidence from simultaneous cinematography and electrophysiology, J. Comp. Physiol. 144: 521 – 531.CrossRefGoogle Scholar
  26. Eaton, R. C., Lavender, W. A., and Wieland, C. M., 1982, Alternative neural pathways initiate fast-start responses following lesions of the Mauthner neuron in goldfish, J. Comp. Physiol. 145: 485 – 496.CrossRefGoogle Scholar
  27. Faber, D. S., and Funch, P. G., 1980, Differential properties of orthodromic and antidromic impulse propagation across the Mauthner cell initial segment, Brain Res. 190: 255 – 260.PubMedCrossRefGoogle Scholar
  28. Faber, D. S., and Korn, H., 1973, A neuronal inhibition mediated electrically, Science 179: 577 – 578.PubMedCrossRefGoogle Scholar
  29. Faber, D. S., and Korn, H., 1975, Inputs from the posterior lateral line nerves upon the goldfish Mauthner cell. II. Evidence that the inhibitory components are mediated by interneurons of the recurrent collateral network, Brain Res. 96: 349 – 356.PubMedCrossRefGoogle Scholar
  30. Faber, D. S., and Korn, H., 1978, Electrophysiology of the Mauthner cell: Basic properties, synaptic mechanisms, and associated networks, in: Neurobiology of the Mauthner cell ( D. S. Faber and H. Korn, eds.), Raven Press, New York, pp. 47 – 131.Google Scholar
  31. Faber, D. S., and Korn, H., 1982, Transmission at a central inhibitory synapse. I. Magnitude of unitary postsynaptic conductance change and kinetics of channel activation, J. Neurophysiol. 48: 654 – 678.PubMedGoogle Scholar
  32. Faber, D. S., Kaars, C., and Zottoli, S. J., 1980, Dual transmission at morphologically mixed synapses: Evidence from postsynaptic cobalt injections, Neuroscience 5: 433 – 440.PubMedCrossRefGoogle Scholar
  33. Fernald, R. D., 1975, Fast body turns in a cichlid fish, Nature 258: 228 – 229.CrossRefGoogle Scholar
  34. Fox, H., and Moulton, J. M., 1968, Mauthner cells and the thyroid hormonal level in larvae of Rana temporaria, Arch. Anat. Microsc. Morphol. Exp. 57: 107 – 119.PubMedGoogle Scholar
  35. Funch, P. G., and Faber, D. S., 1982, Action-potential propagation and orthodromic impulse initiation in the Mauthner axon, J. Neurophysiol. 47: 1214 – 1231.PubMedGoogle Scholar
  36. Funch, P. G., Kinsman, S. L., Faber, D. S., Koenig, E., and Zottoli, S. J., 1981, Mauthner axon diameter and impulse conduction velocity decreases with growth of goldfish, Neurosci. Lett. 27: 159 – 164.PubMedCrossRefGoogle Scholar
  37. Furshpan, E. J., 1964, Electrical transmission at an excitatory synapse in a vertebrate brain, Science 144: 878 – 880.PubMedCrossRefGoogle Scholar
  38. Furshpan, E. J., and Furukawa, T., 1962, Intracellular and extracellular responses of the several regions of the Mauthner cell of the goldfish, J. Neurophysiol. 25: 732 – 771.PubMedGoogle Scholar
  39. Furukawa, T., 1966, Synaptic interaction at the Mauthner cell of the goldfish, Prog. Brain Res. 21A: 44 – 70.PubMedCrossRefGoogle Scholar
  40. Furukawa, T., and Furshpan, E. J., 1963, Two inhibitory mechanisms in the Mauthner neurons of goldfish, J. Neurophysiol. 26: 140 – 176.PubMedGoogle Scholar
  41. Furukawa, T., and Ichii, Y., 1967, Neurophysiological studies on hearing in goldfish, J. Neurophysiol. 30: 1377 – 1403.PubMedGoogle Scholar
  42. Furukawa, T., Fukami, Y., and Asada, Y., 1963, A third type of inhibition in the Mauthner cell of the goldfish, Jpn. J. Physiol. 14: 386 – 399.CrossRefGoogle Scholar
  43. Hackett, J. T., and Faber, D. S., 1983a, Mauthner axon networks mediating supraspinal components of the startle response, Neuroscience 8: 317 – 331.PubMedCrossRefGoogle Scholar
  44. Hackett, J. T., and Faber, D. S., 1983b, Relay neurons mediate collateral inhibition of the goldfish Mauthner cell, Brain Res. 264: 302 – 306.PubMedCrossRefGoogle Scholar
  45. Hackett, J. T., Cochran, S. L., and Brown, D. L., 1979, Functional properties of afferents which synapse on the Mauthner neuron in the amphibian tadpole, Brain Res. 176: 148 – 152.PubMedCrossRefGoogle Scholar
  46. Highstein, S. M., and Bennett, M. V. L., 1975, Fatigue and recovery of transmission at the Mauthner fiber and giant fiber synapse of the hatchetfish, Brain Res. 98: 229 – 242.PubMedCrossRefGoogle Scholar
  47. Kaars, C., and Faber, D. S., 1981, Myelenated central vertebrate axon lacks voltagesensitive potassium conductance, Science 212: 1063 – 1065.PubMedCrossRefGoogle Scholar
  48. Kandel, E. R., 1976, Cellular Basis of Behavior, W. H. Freeman and Co., San Francisco.Google Scholar
  49. Kimmel, C. B., 1982a, Reticulospinal and vestibulospinal neurons in the young larva of a teleost fish, Brachydanio renio, Prog. Brain Res. 57: 1 - 24.PubMedCrossRefGoogle Scholar
  50. Kimmel, C. B., 19826, Development of synapses on the Mauthner neuron, Trends Neurosci. 5: 47 – 50.Google Scholar
  51. Kimmel, C. B., and Eaton, R. C., 1976, Development of the Mauthner cell, in: Simpler Networks and Behavior ( J. C. Fentress, ed.), Sinauer Associates Publishers, Sunderland, Massachusetts, pp. 186 – 202.Google Scholar
  52. Kimmel, C. B., Patterson, J., and Kimmel, R. O., 1974, The development and behavioral characteristics of the startle response in the zebrafish, Dev. Psychobiol. 7: 47 – 60.PubMedCrossRefGoogle Scholar
  53. Kimmel, C. B., Eaton, R. C., Powell, S. L., 1980, Decreased fast-start performance of zebrafish lacking Mauthner neurons, J. Comp. Physiol. 140: 343 – 350.CrossRefGoogle Scholar
  54. Kimmel, C. B., Sessions, S. K., and Kimmel, R. J., 1981, Morphogenesis and synaptogenesis of the zebrafish Mauthner neuron, J. Comp. Neurol. 198: 101 – 120.PubMedCrossRefGoogle Scholar
  55. Kimmel, C. B., Powell, S. L., and Metcalfe, W. K., 1982a, Brain neurons which project to the spinal cord in young larvae of the zebrafish, J. Comp. Neurol. 205: 112 – 127.PubMedCrossRefGoogle Scholar
  56. Kimmel, C. B., Metcalfe, W. K., Schabtach, E., 1982b, Reticular neurons with T-shaped axons in embryos of the zebrafish, Soc. Neurosci. Abstr. 8: 764.Google Scholar
  57. Korn, H., and Axelrad, H., 1980, Electrical inhibition of Purkinje cells in the cerebellum of the rat, Proc. Natl. Acad. Sci. U.S.A. 77: 6244 – 6247.PubMedCrossRefGoogle Scholar
  58. Korn, H., and Faber, D. S., 1975a, An electrically mediated inhibition in goldfish medulla, J. Neurophysiol. 38: 452 – 471.PubMedGoogle Scholar
  59. Korn, H., and Faber, D. S., 1975b, Inputs from the posterior lateral line nerves upon the goldfish Mauthner cell. I. Properties and synaptic localization of the excitatory component, Brain Res. 96: 342 – 348.PubMedCrossRefGoogle Scholar
  60. Korn, H., and Faber, D. S., 1976, Vertebrate central nervous system: Same neurons mediate both electrical and chemical inhibitions, Science 194: 1166 – 1169.PubMedCrossRefGoogle Scholar
  61. Korn, H., Faber, D. S., and Mariani, J., 1974, Existence de projections des nerfs posterieurs de la ligne laterale sur la cellule de Mauthner; leur effet antagoniste sur l’activation de ce neurone par les afferences vestibulares, C. R. Seances Acad. Sci. (D) 279: 413 – 416.Google Scholar
  62. Korn, H., Triller, A., and Faber, D. S., 1978, Structural correlates of recurrent collateral interneurons producing both electrical and chemical inhibitions of the Mauthner cell, Proc. R. Soc. London, Ser. B. Biol. Sci. 202: 533 – 539.CrossRefGoogle Scholar
  63. Kupfermann, I., and Weiss, K. R., 1978, The command neuron concept, Behay. Brain Sci. 1: 3 – 39.CrossRefGoogle Scholar
  64. Lauder, G. V., and Liem, K. F., 1981, Prey capture by Luciocephalus pulcher: Implications for models of jaw protrusion in teleost fishes, Environ. Biol. Fish. 6: 257 – 268.CrossRefGoogle Scholar
  65. Lawrence, D. G., and Kuypers, H. G. J. M., 1968, The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brain-stem pathways, Brain 91: 1 – 36.PubMedCrossRefGoogle Scholar
  66. Lin, J.-W., Wood, M. R., and Faber, D. S., 1982, Saccular nerve input to the lateral dendrite of the goldfish Mauthner cell: A combined electrophysiological and morphological study, Soc. Neurosci. Abstr. 8: 764.Google Scholar
  67. Metcalfe, W. K., and Kimmel, C. B., 1982, Three types of posterior lateral line efferent neurons in larval zebrafish, Soc. Neurosci. Abstr. 8: 763.Google Scholar
  68. Model, P. G., Spira, M. E., and. Bennett, M. V. L., 1972, Synaptic inputs to the cell bodies of the giant fibers of the hatchet fish, Brain Res. 45: 288 – 295.Google Scholar
  69. Nakajima, Y., 1974, Fine structure of the synaptic endings on the Mauthner cell of the goldfish, J. Comp. Neurol. 156: 375 – 402.CrossRefGoogle Scholar
  70. Partridge, B. L., 1981, Lateral line function and the internal dynamics of fish schools, in: Hearing and Sound Communication in Fishes ( W. N. Tavolga, A. N. Popper, and R. R. Fay, eds.), Springer-Verlag, New York, pp. 515 – 522.CrossRefGoogle Scholar
  71. Prugh, J. I. P., Kimmel, C. B., and Metcalfe, W. K., 1983, Noninvasive recording of the Mauthner neuron action potential in larval zebrafish, J. Exp. Biol. 101: 83 – 92.Google Scholar
  72. Rand, D. M., and Lauder, G. V., 1981, Prey capture in the chain pickerel, Esox niger: Correlations between feeding and locomotor behavior, Can. J. Zool. 59: 1072 – 1078.CrossRefGoogle Scholar
  73. Rock, M. K., 1980, Functional properties of the Mauthner cell in the tadpole Rana catesbeiana, J. Neurophysiol. 44: 135 – 150.PubMedGoogle Scholar
  74. Rock, M. K., Hackett, J. T., and Brown, D. L., 1981, Does the Mauthner cell conform to the criteria of the command neuron concept? Brain Res. 204: 21 – 27.PubMedCrossRefGoogle Scholar
  75. Rodgers, W. L., Melzack, R., and Segal, J. R., 1963, “Tail-flip” response in goldfish, J. Comp. Physiol. Psycho!. 56:917–923.Google Scholar
  76. Rovainen, C. M., 1979, Neurobiology of lampreys, Physiol. Rev. 59: 1007 – 1077.PubMedGoogle Scholar
  77. Russell, I. J., 1976, Central inhibition of lateral line input in the medulla of the goldfish by neurons which control active body movements, J. Comp. Physiol. 111: 335 – 358.CrossRefGoogle Scholar
  78. Sand, O., 1981, The lateral line and sound reception, in: Hearing and Sound Communication in Fishes ( W. N. Tavolga, A. N. Popper, and R. R. Fay, eds.), Springer-Verlag, New York, pp. 459 – 480.CrossRefGoogle Scholar
  79. Schwartz, E., 1967, Analysis of surface-wave perception in some teleosts, in: Lateral Line Detectors ( P. H. Cahn, ed.), Indiana University Press, Bloomington, pp. 123 – 134.Google Scholar
  80. Stefanelli, A., 1951, The Mauthnerian apparatus in the Ichthyopsida: Its nature and function and correlated problems of neurohistogenesis, Q. Rev. Biol. 26: 17 – 34.PubMedCrossRefGoogle Scholar
  81. Stefanelli, A., 1980, I neuroni di Mauthner degli Ittiopside. Valutizioni comparative morfologiche e funzionali, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez. III, Series 8, 16: 1 – 45.Google Scholar
  82. Thompson, R. F., and Spencer, W. A., 1966, Habituation: A model phenomenon for the study of neuronal substrates of behavior, Psycho!. Rev. 73: 16 – 43.CrossRefGoogle Scholar
  83. Triller, A., and Korn, H., 1978, Mise en evidence electrophysiologique et anatomique de neurones vestibulaires inhibiteurs commissuraux chez la Tanche (Tinca tinca), C. R. Seances Acad. Sci. Ser. D. 286: 89 – 92.Google Scholar
  84. Triller, A., and Korn, H., 1982a, Morphologically distinct classes of inhibitory synapses arise from the same neurons: Ultrastructural identification from crossed vestibular interneurons intracellularly stained with HRP, J. Comp. Neurol. 203: 131 – 155.CrossRefGoogle Scholar
  85. Triller, A., and Korn, H., 19826, Transmission at a central inhibitory synapse. III. Ultra-structure of physiologically identified and stained terminals, J. Neurophysiol. 48: 708 – 736.Google Scholar
  86. Vinyard, G. L., 1982, Variable kinematics of Sacramento perch (Archoplites interruptus) capturing evasing and nonevasive prey, Can. J. Fish. Aquas. Sci. 39: 209 – 211.Google Scholar
  87. Webb, P. W., 1975, Acceleration performance of rainbow trout, Salmo gairdneri, and green sunfish, Lepomis cyanellus, J. Exp. Biol. 63: 451 – 465.Google Scholar
  88. Webb, P. W., 1976, The effect of size on the fast-start performance of rainbow trout Salmo gairdneri, and a consideration of piscivorous predator-prey interactions, J. Exp. Biol. 65: 157 – 177.PubMedGoogle Scholar
  89. Webb, P. W., 1978a, Temperature effects on acceleration of rainbow trout, Salmo gairdneri, J. Fish. Res. Board Can. 35: 1417 – 1422.CrossRefGoogle Scholar
  90. Webb, P. W., 1978b, Fast-start performance and body form in seven species of teleost fish, J. Exp. Biol. 74: 211 – 226.Google Scholar
  91. Webb, P. W., 1980, Does schooling reduce fast-start response latencies in teleosts? Comp. Biochem. Physiol. A. Comp. Physiol. 65: 321 – 324.CrossRefGoogle Scholar
  92. Webb, P. W., 1981, Responses of northern anchovy, Engraulis mordax, larvae to predation by a biting planktivore, Amphiprion percula, Fish. Bull. 79: 727 – 735.Google Scholar
  93. Webb, P. W., 1982, Fast-start resistance of trout, J. Exp. Biol. 96: 93 – 106.Google Scholar
  94. Webb, P. W., and Skadsen, J. M., 1980, Strike tactics of Esox, Can. J. Zool. 58: 1462 – 1469.PubMedCrossRefGoogle Scholar
  95. Weihs, D., 1973, The mechanism of rapid starting of slender fish, Biorheology 10: 343 – 350.PubMedGoogle Scholar
  96. Weihs, D., and Webb, P. W., 1984, Optimal avoidance and evasion tactics in predatoryprey interactions, J. Theor. Biol. (in press).Google Scholar
  97. Wieland, C. M., and Eaton, R. C., 1983, An electronic cine camera system for the automatic collection and analysis of high-speed movement of unrestrained animals, Behay. Res. Methods Instr. 15: 437 – 440.CrossRefGoogle Scholar
  98. Wilson, D. M., 1959, Function of giant Mauthner’s neurons in the lungfish, Science 29: 841 – 842.CrossRefGoogle Scholar
  99. Wine, J. J., and Krasne, F. B., 1982, The cellular organization of crayfish escape behavior, in: The Biology of Crustacea, Vol. 4 ( D. C. Sandeman and H. L. Atwood, eds.), Academic Press, New York, pp. 241 – 292.Google Scholar
  100. Wyman, R. L., and Ward, J. A., 1973, The development of behavior in the cichlid fish Etroplus maculatus (Bloch), Z. Tierpsychol. 33: 461 – 491.PubMedCrossRefGoogle Scholar
  101. Yasargil, G. M., Greeff, N. G., Luescher, H. R., Akert, K., and Sandri, C., 1982, The structural correlate of saltatory conduction along the Mauthner axon in the tench (Tinca tinca L.): Identification of nodal equivalents at the axon collaterals, J. Comp. Neurol. 212: 417 – 424.PubMedCrossRefGoogle Scholar
  102. Zottoli, S. J., 1977, Correlation of the startle reflex and Mauthner cell auditory responses in unrestrained goldfish, J. Exp. Biol. 66: 243 – 254.PubMedGoogle Scholar
  103. Zottoli, S. J., 1978, Comparative morphology of the Mauthner cell in fish and amphibians, in: Neurobiology of the Mauthner Cell ( D. S. Faber and H. Korn, eds.), Raven Press, New York, pp. 13 – 45.Google Scholar
  104. Zottoli, S. J., 1981, Electrophysiological and morphological characterization of the winter flounder Mauthner cell, J. Comp. Physiol. 143: 541 – 553.CrossRefGoogle Scholar
  105. Zottoli, S. J., and Faber, D. S., 1979, Properties and distribution of anterior VIIIth nerve excitatory inputs to the goldfish Mauthner cell, Brain Res. 174: 319 – 323.PubMedCrossRefGoogle Scholar
  106. Zottoli, S. J., and Faber, D. S., 1980, An identified class of statoacoustic interneurons with bilateral projections in the goldfish medulla, Neuroscience 5: 1287 – 1302.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Robert C. Eaton
    • 1
  • John T. Hackett
    • 2
  1. 1.Behavioral Biology Group, Department of Biology, E.P.O.University of ColoradoBoulderUSA
  2. 2.Department of Physiology, School of MedicineUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations