Skip to main content

Micellar Structure and Water Penetration Studied by NMR and Optical Spectroscopy

  • Chapter
Surfactants in Solution

Abstract

The molecular structure of aqueous micellar solutions and microemulsions is studied by spectroscopic methods, employing molecules that respond to polarity. The spectroscopic methods used are: fluorescence (spectra, lifetimes and quenching studies) and NMR. In the fluorescence experiments, the probe molecules are present in extremely low concentration (below 10−6 M), thereby minimizing the possible perturbation of the probe environment. The probes are predominantly solubilized in the micellar phase. Their location can be investigated utilizing NMR spectroscopy (ring current effect).

Dedicated to Professor Friedrich Boberg on the occasion of his 60th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Present address: Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32-46, 02-668 Warszawa, Poland.

    Google Scholar 

  2. C. Tanford, “The Hydrophobic Effect: Formation of Micelles and Biological Membranes”, Wiley-Interscience, New York, 1980.

    Google Scholar 

  3. F.M. Menger, Acc.Chem.Res., 12, 111 (1979).

    Article  CAS  Google Scholar 

  4. H. Wennerström and B. Lindman, J.Phys.Chem., 83, 2931 (1979).

    Article  Google Scholar 

  5. P. Fromherz, Chem. Phys. Letters, 77, 460 (1981).

    Article  CAS  Google Scholar 

  6. G.S. Hartley, Kolloid-Z., 88, 22 (1939).

    Article  CAS  Google Scholar 

  7. W. Philippoff, J. Colloid Sci., 5, 169 (1950).

    Article  CAS  Google Scholar 

  8. D. Mackay and W.Y. Shiu, J. Chem. Eng. Data, 22, 399 (1977).

    Article  CAS  Google Scholar 

  9. A. Nakajima, Bull. Chem. Soc. Japan, 46, 2602 (1973).

    Article  CAS  Google Scholar 

  10. A. Nakajima, Bull. Chem. Soc. Japan, 44, 3272 (1971).

    Article  CAS  Google Scholar 

  11. K. Kalyanasundaram and J.K. Thomas, J. Am. Chem. Soc., 99, 2039 (1977).

    Article  CAS  Google Scholar 

  12. P. Lianos and S. Georghiou, Photochem. Photobiol., 30, 355 (1979).

    Article  CAS  Google Scholar 

  13. K.A. Zachariasse, in “Fluorescent Techniques and Membrane Markers in Cancer and Immunology: Membrane Dynamics, Cellular Characterization and Cell Sorters”, P. Viallet, Editor, Elsevier, Amsterdam, in press (1983).

    Google Scholar 

  14. J. Ulmius, B. Lindman, G. Lindblom, and T. Drakenberg, J. Colloid Interface Sci., 65, 88 (1978).

    Article  CAS  Google Scholar 

  15. M. Almgren, F. Grieser, and J.K. Thomas, J. Am. Chem. Soc., 101, 279 (1979).

    Article  CAS  Google Scholar 

  16. K.A. Zachariasse and B. Kozankiewicz, 1983, in preparation.

    Google Scholar 

  17. K.A. Zachariasse, Nguyen Van P., and B. Kozankiewicz, J.Phys.Chem., 85, 2676 (1981).

    Article  CAS  Google Scholar 

  18. Ch. Reichardt and K. Dimroth, Fortschr. Chem. Forsch., 11, 1 (1968).

    Article  CAS  Google Scholar 

  19. K. Kalyanasundaram and J.K. Thomas, J.Phys.Chem., 81, 2176 (1977).

    Article  CAS  Google Scholar 

  20. J.C. Dederen, L. Coosemans, F.C. De Schryver, and A. Van Dormael, Photochem. Photobiol., 30, 443 (1979).

    Article  CAS  Google Scholar 

  21. F.M. Martens and J.W. Verhoeven, J.Phys.Chem., 85, 1773 (1981).

    Article  CAS  Google Scholar 

  22. J.C. Russell, D.G. Whitten, and A.M. Braun, J. Am. Chem. Soc., 103, 3129 (1981).

    Google Scholar 

  23. F.M. Menger, J.M. Jerkunica, and J.C. Johnston, J. Am. Chem. Soc., 100, 4676 (1978).

    Article  CAS  Google Scholar 

  24. K.R. Thulborn, in “Fluorescent Probes”, G.S. Beddard and M.A. West, Editors, pp. 113–141, Academic Press, London; 1981.

    Google Scholar 

  25. E. Sackmann, Z. Physik. Chem. (Frankfurt am Main), 101, 391 (1976).

    Article  CAS  Google Scholar 

  26. S.S. Atik, M. Nam, and L.A. Singer, Chem. Phys. Letter s, 67, 75 (1979).

    Article  CAS  Google Scholar 

  27. M.A.J. Rodgers and M.F. Da Silva E Wheeler, Chem. Phys. Letters, 43, 587 (1976).

    Article  CAS  Google Scholar 

  28. Probe molecules can in principle lead to a distortion of the structure of the micelles.13 However, for a probe/surfactant ratio 1:40 the plot of ΔΔσ for the various H atoms gives a pattern similar to the one depicted in Figure 2. This supports our assumption that the probes do not essentially perturb the micellar structure.

    Google Scholar 

  29. F.A. Bovey, “Nuclear Magnetic Resonance Spectroscopy”, pp. 64–71, Academic Press, New York, 1969.

    Google Scholar 

  30. The patterns of ΔΔσ (Figure 3) represent the product of two distributions, the distribution of the probe molecule with respect to the various H atoms in the surfactant molecule and the distribution of these H atoms between the micellar surface and center.17 The central micellar region is considered to be a volume, comprising a large part of the total volume of the (dynamic) micelle, down from the γ-CH2 group to the center (see text).

    Google Scholar 

  31. The fact that the decays are single exponential indicates that the shortening of the lifetime is not due to the presence of probe molecules in the bulk aqueous phase (see Table II).

    Google Scholar 

  32. Investigations16 of this interaction in the system Py(CH2)3COOH/ tetraethylammonium chloride (1.4M) in H2O (pH 8.8, at 30°C) show that the fluorescence decay time of Py(CH2)3COOH (146 ns, cf. Table II) is not decreased by the presence of the tetra-alkylammonium compound per se.

    Google Scholar 

  33. T. Saito, S. Yososhima, H. Masuhara, and N. Mataga, Chem. Phys. Letters, 59, 193 (1978).

    Article  CAS  Google Scholar 

  34. M.A.J. Rodgers and M.F. Da Silva E Wheeler, Chem. Phys. Letters, 53, 165 (1978).

    Article  CAS  Google Scholar 

  35. J.C. Dederen, M. Van der Auweraer, and F.C. De Schryver, J. Phys. Chem., 85, 1198 (1981).

    Article  CAS  Google Scholar 

  36. M.F. Emerson and A. Holtzer, J. Phys. Chem., 71, 1898 (1967).

    Article  CAS  Google Scholar 

  37. This value for the diffusion coefficient D of pyrene in a SDS micelle (0.1M) at 30°C, is based on the value for D in hexane (2.93 x 10−5 cm2sec−1, taken from Reference 38) and the viscosity (19cP at 30°C) of the environment of l,3-di(l-pyrenyl) propane in SDS, reported in Reference 13. The diffusion coefficient of the pyrenyl end group in Py(CH2)nCOOH will be smaller than that of pyrene.

    Google Scholar 

  38. E.G. Meyer and B. Nickel, Z. Naturforsch., 35A, 503 (1980).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zachariasse, K.A., Kozankiewicz, B., Kühnle, W. (1984). Micellar Structure and Water Penetration Studied by NMR and Optical Spectroscopy. In: Mittal, K.L., Lindman, B. (eds) Surfactants in Solution. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2280-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2280-9_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2282-3

  • Online ISBN: 978-1-4899-2280-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics