Advertisement

NMR and Polarized Emission Studies of Cubic Phases and Model Membranes

  • Per-Olof Eriksson
  • Lennart B.-Å. Johansson
  • Göran Lindblom
Chapter

Abstract

Membrane lipids may form several different liquid crystalline phases depending on composition and temperature. In recent years studies have been focussed on the structure and molecular dynamics in the viscous isotropic or cubic liquid crystalline phases. The structural investigations performed with low angle X-ray diffraction usually do not give a complete picture of the structure and additional methods are needed. Two such methods are provided by NMR and time-resolved polarized emission briefly reviewed here. Lipid lateral diffusion coefficients for several different lamellar and cubic phases are summarized and the luminescence method for studies of aggregate geometry is described. It is shown that measurements of diffusional motion and quadrupole relaxation times can give information about dynamics as well as structure of the cubic phases.

Keywords

Lateral Diffusion Liquid Crystalline Phasis Lipid System Lateral Diffusion Coefficient Emission Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.J. Singer and G.L. Nicolson, Science., 175, 720 (1972).CrossRefGoogle Scholar
  2. 2.
    V. Luzzati, A. Tardieu, Y. Gulik-Krzywicki, E. Rivas and F. Reis-Husson, Nature (London) 220, 485 (1968).CrossRefGoogle Scholar
  3. 3.
    B. Kachar and T.S. Reese, ibid., 296, 464 (1982).Google Scholar
  4. 4.
    S.W. Hui and L.T. Boni, ibid., 296, 175 (1982).Google Scholar
  5. 5.
    E. Selstam, G. Lindblom, I. Brentel and M. Ryberg, (1982) in: Biochemistry and Metabolism of Plant Lipids (Wintermans, J.F.G.M. and Kuiper, P.J.C. eds), Dev. Plant Biol. vol. 8 389, Elsevier Biomedical, Amsterdam, New York.Google Scholar
  6. 6.
    P.-O. Eriksson, A. Khan and G. Lindblom, J. Phys. Chem., 86, 387 (1982)CrossRefGoogle Scholar
  7. 7.
    J. Ulmius, G. Lindblom, H. Wennerström, L.B.-Å. Johansson, K. Fonteil, O. Söderman, and G. Arvidson, Biochemistry, 21, 1553 (1982).CrossRefGoogle Scholar
  8. 8.
    Å. Wieslander, L. Rilfors, L.B.-Å. Johansson, and G. Lindblom, ibid., 20, 730 (1981).Google Scholar
  9. 9.
    Å. Wieslander, A. Christiansson, L. Rilfors, and G. Lindblom, ibid., 19, 3650 (1980).Google Scholar
  10. 10.
    G. Lindblom, K. Larsson, L.B.-Å. Johansson, K. Fonteil, and S. Forsén, J. Am. Chem. Soc. 101, 5465 (1979).CrossRefGoogle Scholar
  11. 11.
    P.-O. Eriksson, G. Arvidson, and G. Lindblom, to be published.Google Scholar
  12. 12.
    P.R. Cullis and B. De Kruijff, Biochim. Biophys. Acta., 559, 399 (1979).CrossRefGoogle Scholar
  13. 13.
    A. Stier, S.A. Finch, and B. Bösterling, FEBS Lett. 91, 109 (1978).CrossRefGoogle Scholar
  14. 14.
    L. Rilfors, A. Kahn, I. Brentel, Å. Wieslander and G. Lindblom, FEBS Lett. 149, 293 (1982).CrossRefGoogle Scholar
  15. 15.
    G. Lindblom and H. Wennerström, Biophys. Chem. 6, 167 (1977).CrossRefGoogle Scholar
  16. 16.
    G. Lindblom, L.B.-Å. Johansson, and G. Arvidson, Biochemistry 20, 2204 (1981).CrossRefGoogle Scholar
  17. 17.
    A. Khan, A.J. Verkleij, P.-O. Eriksson, Å. Wieslander, and G. Lindblom, to be published.Google Scholar
  18. 18.
    E.O. Stejskal and J.E. Tanner, J. Chem. Phys. 49, 288 (1965).CrossRefGoogle Scholar
  19. 19.
    H. Wennerström and G. Lindblom, Q. Rev. Biophys., 10, 67 (1977).CrossRefGoogle Scholar
  20. 20.
    V. Luzzati and P.A. Spegt, Nature (London) 215, 701 (1967).CrossRefGoogle Scholar
  21. 21.
    A. Abragam, “The Principles of Nuclear Magnetism”, Oxford University Press, London 1961.Google Scholar
  22. 22.
    J. Charvolin and P. Rigny, J. Chem. Phys. 58, 3999 (1973).CrossRefGoogle Scholar
  23. 23.
    H. Wennerström, G. Lindblom, and B. Lindman, Chem. Scr. 6, 97 (1974).Google Scholar
  24. 24.
    B. Halle and H. Wennerström, J. Chem. Phys. 75, 1928 (1981).CrossRefGoogle Scholar
  25. 25.
    K. Kinosita, S. Kawato, and A. Ikegami, Biophys. J. 20, 289 (1977).CrossRefGoogle Scholar
  26. 26.
    C. Zannoni, Mol. Phys. 38, 1813 (1979); ibid 42, 1303 (1981).CrossRefGoogle Scholar
  27. 27.
    L.B.-Å. Johansson and G. Lindblom, Q. Rev. Boophys. 13, 63 (1980).CrossRefGoogle Scholar
  28. 28.
    A. Szabo, J. Chem. Phys. 72 4620 (1980).CrossRefGoogle Scholar
  29. 29.
    P.L. Nordio and P. Busolin, J. Chem. Phys. 55, 5485 (1971); H. Wennerström, from pure symmetry arguments it can be shown that an infinite number of exponentials are needed, personal communication.CrossRefGoogle Scholar
  30. 30.
    H. Wennerström and J. Ulmius, J. Magn. Reson. 23, 431 (1976).Google Scholar
  31. 31.
    J. Ulmius and H. Wennerström, ibid., 28, 309 (1977).Google Scholar
  32. 32.
    U. Henriksson, L. Ödberg and J.-C. Eriksson, J. Phys. Chem. 81, 76 (1977).CrossRefGoogle Scholar
  33. 33.
    O. Söderman, G. Lindblom, L.B.-Å. Johansson, and K. Fonteil, Mol. Cryst. Liquid Cryst. 59, 121 (1980).CrossRefGoogle Scholar
  34. 34.
    L.B.-Å. Johansson, O. Söderman, K. Fonteil, and G. Lindblom, J. Phys. Chem. 85, 3694 (1981).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Per-Olof Eriksson
    • 1
  • Lennart B.-Å. Johansson
    • 1
  • Göran Lindblom
    • 1
  1. 1.Department of Physical ChemistryUniversity of UmeåUmeåSweden

Personalised recommendations