Skip to main content

Light-Induced Effects in Hydrogenated Amorphous Silicon Alloys

  • Chapter
Physical Properties of Amorphous Materials

Part of the book series: Institute for Amorphous Studies Series ((IASS))

Abstract

Staebler and Wronski [1] observed that prolonged light exposure causes significant changes in the dark and photoconductivity of hydrogenated amorphous silicon alloys (a-Si:H). The effect was found to be reversible; annealing at temperatures above 150°C was found to restore the original values. Later work showed [2, 3] light-induced reversible changes in many other properties of the material. Changes were observed in (1) photo-luminescence, (2) density and energy distribution of gap states, (3) electron spin resonance, (4) sub-band gap absorption, (5) IR spectrum, (6) diffusion length, and (7) solar cell performance. Several models have also been put forward [4–6] to explain this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.L. Staebler and C.R. Wronski, Appl. Phys. Lett. 31, 292(1977).

    Article  ADS  Google Scholar 

  2. D.E. Carlson, Solar Energy Mats. 8, 129(1982).

    Article  ADS  Google Scholar 

  3. J.I. Pankove, Solar Energy Mats. 8, 141(1982).

    Article  ADS  Google Scholar 

  4. S.R. Ovshinsky, J. Noncryst. Solids 32, 17(1979).

    Article  ADS  Google Scholar 

  5. S.R. Elliot, Phil. Mag. 39, 349(1979).

    Article  Google Scholar 

  6. D. Adler, J. de Phys. 42, 04–3(1981);

    ADS  Google Scholar 

  7. D. Adler, Solar Cells 9, 133 (1983).

    Article  ADS  Google Scholar 

  8. I. Solomon, T. Dietl and D. Kaplan, J. de Phys. 39, 1241 (1978).

    Article  Google Scholar 

  9. M.H. Tanielian, H. Fritzsche, C.C. Tsai and E. Symbalisty, Appl. Phys. Lett. 33, 353(1978).

    Article  ADS  Google Scholar 

  10. S. Guha, K.L. Narasimhan and S.M. Pietruszko, J. Appl. Phys. 52, 859(1981).

    Article  ADS  Google Scholar 

  11. B.A. Scott, J.A. Reimer, R.M. Plecenik, E.E. Simonyi and W. Reuter, Appl. Phys. Lett. 40, 973(1982).

    Article  ADS  Google Scholar 

  12. D.I. Jones, R.A. Gibson, P.G. LeComber and W. E. Spear, Solar Energy Mats. 2, 93(1979).

    Article  ADS  Google Scholar 

  13. Y. Mishima, Y. Ashida and M. Hirose, J. Noncryst. Solids 59–60, 707(1983).

    Article  ADS  Google Scholar 

  14. B.Y. Tong, P.K. John, S.K. Wong and K.P. Chik, Appl. Phys. Lett. 38, 789(1981).

    Article  ADS  Google Scholar 

  15. H. Fritzsche, Solar Energy Mats. 3, 447(1980).

    Article  ADS  Google Scholar 

  16. C.R. Wronski and R.E. Daniel, Phys. Rev. B 23, 794(1981).

    Article  ADS  Google Scholar 

  17. K. Morigaki, I. Hirabayashi, N. Nakayama, S. Nitta and K. Shimakawa, Solid State Commun. 33, 851(1980).

    Article  ADS  Google Scholar 

  18. J.I. Pankove and J.E. Berkeyheiser, Appl. Phys. Lett. 37, 705(1980).

    Article  ADS  Google Scholar 

  19. See, for example, S. Guha, Solar Energy Mats. 8, 269 (1982).

    Article  ADS  Google Scholar 

  20. D.V. Lang, J.D. Cohen, J.P. Harbison and A.M. Sargent, Appl. Phys. Lett. 40, 474(1982).

    Article  ADS  Google Scholar 

  21. D. Jousse, P. Viktorovitch, L. Vieux-Rochaz and A. Chenevas- Paule, J. Noncryst. Solids 35–36, 767(1980).

    Article  ADS  Google Scholar 

  22. D. Jousse, R. Basset and S. Delionibus, Appl. Phys. Lett. 37, 208(1980).

    Article  ADS  Google Scholar 

  23. J. Beichler and H. Mell, E. C. Photovoltaic Solar Energy Conference, Stressa, Italy, May 1982.

    Google Scholar 

  24. S. Guha, C.-Y. Huang and S.J. Hudgens, Phys. Rev. B 29, 5995(1984).

    Article  ADS  Google Scholar 

  25. C.-Y. Huang, S. Guha and S.J. Hudgens, Phys. Rev. B 27, 7460(1983).

    Article  ADS  Google Scholar 

  26. M.H. Tanielian, N.B. Goodman and H. Fritzsche, J. de Phys. 12, Suppl. 10, 04–375(1981).

    Google Scholar 

  27. J. Desner, B. Goldstein and D. Szostak, Appl. Phys. Lett. 18, 998(1980).

    Google Scholar 

  28. A. Skumanich, N.M. Amer and W.B. Jackson, Bull. A.P.S. 27, 146(1982).

    Google Scholar 

  29. D. Han and H. Fritzsche, J. Noncryst. Solids 59–60, 397(1983).

    Article  ADS  Google Scholar 

  30. H. Dersch, J. Stuke and J. Beichler, Appl. Phys. Lett. 38, 456(1981).

    Article  ADS  Google Scholar 

  31. S. Guha, C.-Y. Huang and S.J. Hudgens, Appl. Phys. Lett. 45, 50(1984).

    Article  ADS  Google Scholar 

  32. R.S. Crandall and D.L. Staebler, Solar Cells 9, 63(1983).

    Article  ADS  Google Scholar 

  33. S. Guha, J. Yang, W. Czubatyj, S.J. Hudgens and M. Hack, Appl. Phys. Lett. 42, 588(1983).

    Article  ADS  Google Scholar 

  34. R.S. Crandall, Phys. Rev. B 24, 7457(1981).

    Article  ADS  Google Scholar 

  35. D.E. Carlson, J. Vac. Soc. Tech. 20, 290(1982).

    Article  ADS  Google Scholar 

  36. S.M. Pietruszko, K.L. Narasimhan and S. Guha, Phil. Mag. B 43, 357(1981).

    Article  ADS  Google Scholar 

  37. A.E. Delahoy and R.W. Griffith, J. Appl. Phys. 52, 6337 (1981).

    Article  ADS  Google Scholar 

  38. D.L. Staebler, R.S. Crandall and R. Williams, Appl. Phys. Lett. 39, 733(1981).

    Article  ADS  Google Scholar 

  39. S. Guha, Appl. Phys. Lett, (in press).

    Google Scholar 

  40. R.A. Street, Appl. Phys. Lett. 42, 507(1983).

    Article  ADS  Google Scholar 

  41. See, for example, Proc. of SERI Workshop on Light-Induced Effects in a-Si:H and its Effect on Solar Cell Stability, San Diego, 1982; Solar Cells 9, (1983).

    Google Scholar 

  42. Y. Uchida, M. Nishiura, H. Sakai and H. Haruki, Solar Cells 9, 3(1983).

    Article  ADS  Google Scholar 

  43. S. Tsuda, N. Nakamura, K. Watanabe, T. Takahama, H. Nishiwaki, M. Ohnishi and Y. Kuwano, Solar Cells 9, 25(1983).

    Article  ADS  Google Scholar 

  44. W. Kruhler, M. Moller, H. Pfleiderer, R. Plattner and B. Rauscher, EC Photovoltaic Solar Energy Conference, Stressa, Italy, (1982).

    Google Scholar 

  45. N.M. Amer, A. Skumanich and W.B Jackson, J. Noncryst. Solids 59–60, 409(1983).

    Article  ADS  Google Scholar 

  46. Some recent experimental results [Nakamura et al., J. Noncryst. Solids 59–60, 1139 (1983)] indicate that hole trapping also causes metastable changes in the material. The effect, however, is small. It is possible that trapping of the holes weakens the bonds which then break up more easily in the presence of recombination.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guha, S. (1985). Light-Induced Effects in Hydrogenated Amorphous Silicon Alloys. In: Adler, D., Schwartz, B.B., Steele, M.C. (eds) Physical Properties of Amorphous Materials. Institute for Amorphous Studies Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2260-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2260-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2262-5

  • Online ISBN: 978-1-4899-2260-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics