Advertisement

Interfacial Effects in Mass Transport in Ionic Solids

  • L. Heyne
Chapter
Part of the NATO Advanced Science Institutes Series book series (NSSB, volume 97)

Abstract

In any study of mass transport, processes occurring at interfaces play a role. This is true both for diffusion experiments and for measurements of the ionic conductivity. If the aim of such a measurement is the determination of a bulk property, it is always necessary to give attention to a possible interference caused by processes occurring at the surface, at electrodes, if present, or at grain boundaries if a ceramic sample is used. Also when mass-transport processes are utilized in a practical device, such as for instance a galvanic cell, interface properties must be taken into consideration during the design and fabrication of the device. The interfaces that play an important role are:
  1. a)

    Grain boundaries in ceramics,

     
  2. b)

    Free surfaces in dense or porous samples,

     
  3. c)

    Interfaces between components of heterogeneous samples,

     
  4. d)

    Electrodes on solid ionic conductors.

     

Keywords

Charge Carrier Space Charge Mass Transport Surface Potential Debye Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. LeClaire, Brit. J. Appl. Phys. (14), 351, 1963.Google Scholar
  2. 2.
    M. J. Sparnaay, “The Electrical Double Layer”, The International Encyclopaedia of Physical Chemistry and Chemical Physics, Vol. 4, Pergamon Press, Oxford 1972.Google Scholar
  3. 3.
    W. Schottky, Z. Physik, (113), 367, 1939.Google Scholar
  4. W. Schottky, Z. Physik, (118), 539, 1942.Google Scholar
  5. W. Schottky, and R. Spenke, Wiss. Veroff. Siemens, (18), 3, 1939.Google Scholar
  6. N. F. Mott, Proc. Royal Soc. (London), A (171), 27, 1939.Google Scholar
  7. 4.
    J. Ross Macdonald, in “M. Kleitz and J. Dupuy (eds.), Electrode Processes in Solid State Ionics”, p. 149, Reidel Publ. Cy., Dordrecht, Holland, 1976.CrossRefGoogle Scholar
  8. 5.
    See e. g. J. Albery, “Electrode kinetics”, Clarendon Press, Oxford, 1975.Google Scholar
  9. 6.
    C.C.Liang, J. Electrochem. Soc., (120), 1289, 1973.Google Scholar
  10. 7.
    M. R. W. Chang, K. Shahi, and J. B. Wagner Jr., Paper 367, Meeting of the Electrochem. Soc., Boston, May 6–11, 1979.Google Scholar
  11. 8.
    T. Jow, and J. B. Wagner Jr., J. Electrochem. Soc., (126), 1963, 1979.Google Scholar
  12. 9.
    S. Pack, Paper 133, Meeting of the Electrochem. Soc., Los Angeles, Oct. 14–19, 1979.Google Scholar
  13. 10.
    S. Pack, B. Owens, and J. B. Wagner Jr., J. Electrochem. Soc., (127), 2177, 1980.Google Scholar
  14. 11.
    K. Shahi, and J. B. Wanger Jr., J. Electrochem. Soc., (128), 6, 1981.Google Scholar
  15. 12.
    H. Scher, and R. Zallen, J. Chem. Phys., (53), 3759, (1970).Google Scholar
  16. 13.
    P. S. Clarke, J. W. Orton, and A. J. Guest, Phys. Rev. B, (18) 1813, (1978).Google Scholar
  17. 14.
    J. E. Bauerle, J. Phys. Chem. Sol., (30), 2657, 1969.Google Scholar
  18. 15.
    W. I. Archer, and R. D. Armstrong in “Specialist Periodical Reports–Electrochemistry”, Vol. 7, The Chemical Society, London, 1979.Google Scholar
  19. 16.
    See K. J. Vetter, “Elektrochemische Kinetik”, Springer, Berlin, Gottingen, Heidelberg, 1961.CrossRefGoogle Scholar
  20. 17.
    See e. g. J. Crank, “Mathematics of Diffusion”, Clarendon Press, Oxford, 1956.MATHGoogle Scholar
  21. 18.
    L. J. van der Pauw, Philips Res. Repts., (13), 1, 1958.Google Scholar
  22. 19.
    Da. Yu. Wang, and A. S. Nowick, J. Solid State Chem., (35), 325, (1980).Google Scholar
  23. 20.
    M.J. Verkerk, B.J. Middelhuis, and A.J. Burggraaf, Solid State Ionics (6), 159, 1982.Google Scholar
  24. 21.
    C.Wagner, in Proc. 7th Meeting Int. Comm. on Electrochem. Thermodynamics and Kinetics, Lindau (1955), p. 361, Butterworth, London, 1957. See also L.Heyne, in S.Geller, “Solid Electrolytes”, Vol 21 of Topics in Applied Physics, p. 169, Springer Verlag, Berlin, Heidelberg, New York, 1977.Google Scholar
  25. 22.
    L. Heyne, and N.M. Beekmans, Proc. Brit. Ceram. Soc. (19), 229, 1971.Google Scholar
  26. J. Fouletier, P. Fabry, and M. Kleitz, J. Electrochem. Soc. (123), 204, 1976.Google Scholar
  27. W.A. Fischer, and D. Jahnke, “Metallurgische Elecktrochemie” chap. 5.4. 3, Verlag Stahleisen m.b.H., Dusseldorf, Springer, Berlin, 1976.Google Scholar
  28. 23.
    L. Heyne, in S. Geller, “Solid Electrolytes”, Vol. 21 of “Topics in Applied Physics”, p. 169, Springer Verlag, Berlin, Heidelberg, New York, 1977.Google Scholar
  29. 24.
    S. Pizzini, in W. van Gool (ed), “Fast Ion Transport in Solids”, p. 461, North Holland, Amsterdam, London, 1973.Google Scholar
  30. 25.
    L. Heyne, in J. B. Wachtman, and A. D. Franklin, “Mass Transport in Oxydes”, National Bureau of Standards Spec. publication 296, p. 149, 1968.Google Scholar
  31. Da. Yu. Wang, and A. S. Nowick, J. Electrochem. Soc., (127), 113, 1980.Google Scholar
  32. 26.
    Da. Yu. Wang, and A. S. Nowick, J. Electrochem. Soc., (128), 55, 1981.Google Scholar
  33. 27.
    D. Braunshtein, D. S. Tannhauser, and I. Riess, J. Electrochem. Soc., (128), 82, 1981.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • L. Heyne
    • 1
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands

Personalised recommendations