Skip to main content

Left-Right Symmetric Models of Weak Interactions: A Review

  • Chapter
Quarks, Leptons, and Beyond

Part of the book series: NATO ASI Series ((NSSB,volume 122))

Abstract

The last ten years has seen a revolution of sorts in our understanding of the weak interaction phenomena. The four-fermion V-A theory suggested in 1957 by Sudarshan, Marshak, Feynman, Gell-Mann and Sakurai has provided an extremely successful description of observed low energy weak charged current processes. During the decade of the sixties, Glashow, Salam and Weinberg have shown that this theory emerges at low energies out of a renormalizable spontaneously broken gauge theory1 based on the gauge group SU(2)L, × U(1), which in addition, predicts new effects associated with weak neutral currents with definite internal spin structure.

Based on Lecture delivered at the NATO Summer School on Particle Physics, September 4–18: Munich, W. Germany

Work supported by National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For excellent reviews, see M. A. B. Bég and A. Sirlin, Ann. Rev. of Nuc. Sc. 24, 379 (1973) and Phys. Reports, (to appear).

    Article  ADS  Google Scholar 

  2. J. C. Taylor, “Gauge Theories of Weak Interactions”, Cambridge Univ. Press (1976).

    Google Scholar 

  3. For a recent review, see M. Davier, “Proceedings of Twenty-first International Conference on High Energy Physics”. Paris, 1982 ed. by M. Petiau et al.

    Google Scholar 

  4. G. Altarelli, review at this summer school W. Marciano and A. Sirlin, Phys. ev. Lett. 46, 163 (1981)

    Article  Google Scholar 

  5. C. Llewellynsmith and J. Wheater, Nuc. Phys. B208, 27 (1982).

    ADS  Google Scholar 

  6. G. Arnison et al, Phys. Lett. 126B, 398 and 129B, 273 (1983)

    ADS  Google Scholar 

  7. P. Bagnaia et al, Phys. Lett. 129B, 130 (1983).

    ADS  Google Scholar 

  8. J. C. Pati and A. Salam, Phys. Rev. D10, 275 (1974)

    ADS  Google Scholar 

  9. R. N. Mohapatra and J. C. Pati, Phys. Rev. D11, 566, 2558 (1975)

    ADS  Google Scholar 

  10. G. Senjanović and R. N. Mohapatra, Phys. Rev. D12, 1502 (1975). For a detailed review, see; R. N. Mohapatra, “New Frontiers in High Energy Physics” ed by B. Kursunoglu et al., Plenum Press, p. 337 1978.

    ADS  Google Scholar 

  11. G. Senjanović and R.N. Mohapatra, ref. 5.

    Google Scholar 

  12. V. Lyubimov et al., Phys. Lett. 94B, 266 (1980).

    ADS  Google Scholar 

  13. R. Cowsik and J. McClelland, Phys. Rev. Lett. 29, 669 (1972)

    Article  ADS  Google Scholar 

  14. S. S. Gershtein and Ya B. Zel’dovich, JETP Letters 4, 120 (1966).

    ADS  Google Scholar 

  15. H. Harari and N. Seiberg, Phys. Lett. 98B, 269 (1981)

    ADS  Google Scholar 

  16. O. W. Greenberg and J. Sucher, Phys. Lett. 99B, 339 (1981)

    ADS  Google Scholar 

  17. R. Barbieri, R. N. Mohapatra and A. Masiero, Phys. Lett. 105B, 369 (1981)

    ADS  Google Scholar 

  18. R. Cassalbuoni and R. Gatto, Phys. Lett. 103B, 113 (1981). For a review, see R. N. Mohapatra, “Proceedings of Neutrino mass mini-conference”, Telemark, AIP publication.

    ADS  Google Scholar 

  19. R. N. Mohapatra and R. E. Marshak, Phys. Lett. 91B, 222 (1980).

    ADS  Google Scholar 

  20. A. Davidson, Phys. Rev. D20, 776 (1979).

    ADS  Google Scholar 

  21. R. N. Mohapatra and J. C. Pati, Phys. Rev. D11, 566 (1975).

    ADS  Google Scholar 

  22. D. Chang, Nuc. Phys. B214, 435 (1983).

    Article  ADS  Google Scholar 

  23. G. Branco, J. M. Frere and J. M. Gerard, Nuc. Phys. B221, 317 (1983).

    Article  ADS  Google Scholar 

  24. N. G. Deshpande, Phys. Rev. D23, 2654 (1981).

    ADS  Google Scholar 

  25. A. I. Sanda, Phys. Rev. D23, 2647 (1981).

    ADS  Google Scholar 

  26. M. Schmidt, Talk at VPI min-conference on “Low Energy Tests of Conservation Laws”, 1983.

    Google Scholar 

  27. L. Wolfenstein, Phys. Rev. Lett. 51, (1983).

    Google Scholar 

  28. G. Senjanović, Nuc. Phys. B153, 334 (1979).

    Article  ADS  Google Scholar 

  29. D. Chang, R. N. Mohapatra and M. K. Parida, Univ. of Maryland Preprint Oct. (1983).

    Google Scholar 

  30. L. L. Chau, Phys. Reports 95, 1 (1983).

    Article  ADS  Google Scholar 

  31. K. Klenknecht and L. Renk, CERN Preprint (1983).

    Google Scholar 

  32. R. N. Mohapatra and G. Senjanović, Phys. Rev. Lett. 44, 912 (1980) and Phys. Rev. 21, 165 (1981).

    Article  ADS  Google Scholar 

  33. R. N. Mohapatra and R. E. Marshak, Phys. Rev. Lett. 44, 1316 (1980).

    Article  ADS  Google Scholar 

  34. J. C. Pati, S. Rajpoot and A. Salam, Phys. Rev. D7, 131 (1978).

    MathSciNet  ADS  Google Scholar 

  35. V. Barger, E. Ma and K. Whisnant, Phys. Rev. D26, 2378 (1982).

    ADS  Google Scholar 

  36. I. Liede, J. Maalampi and M. Roos, Nuc. Phys. B146, 157 (1978).

    Article  ADS  Google Scholar 

  37. T. Rizzo and G. Senjanović, Phys. Rev. D24, 704 (1981).

    ADS  Google Scholar 

  38. X. Li and R. E. Marshak, Phys. Rev. D25, 1886 (1982).

    ADS  Google Scholar 

  39. N. G. Deshpande and R. Johnson, Phys. Rev. D27, 1165 (1983).

    ADS  Google Scholar 

  40. For earlier work see, J. E. Kim et al., Rev. Mod. Phys. 53, 211 (1981).

    Article  ADS  Google Scholar 

  41. M. Gell-Mann, P. Ramond and R. Slansky, in “Supergravity” ed by D. Freedman et al. (North Holland) (1979).

    Google Scholar 

  42. T. Yanagida, KEK lectures (1979).

    Google Scholar 

  43. M. Gronau and S. Nussinov, Fermilab Preprint (1982).

    Google Scholar 

  44. M. Gronau and S. Yahalom, Weizman Preprint (1982).

    Google Scholar 

  45. M. A. B. Bég, R. Budny, R. N. Mohapatra and A. Sirlin, Phys. Rev. Lett. 38, 1252 (1977). For a subsequent extensive analysis, see, J. Maalampi, K. Mursula and M. Roos, Nuc. Phys. B207, 233 (1982).

    Article  ADS  Google Scholar 

  46. M. Roos, et al., Review of Particle Properties, Phys. Lett. 111B. 1 (1982).

    MathSciNet  Google Scholar 

  47. F. W. Koks and J. Vanklinken, Nuc. Phys. A272, 61 (1976).

    ADS  Google Scholar 

  48. J. Carr et al LBL-Preprint 16183.

    Google Scholar 

  49. F. Corrivean et al., Phys. Rev. D24, 2004 (1981).

    ADS  Google Scholar 

  50. T. Yamazaki et al., KEK Preprint (1983).

    Google Scholar 

  51. B. Holstein and S. Treiman, Phys. Rev. D16, 2369 (1977).

    ADS  Google Scholar 

  52. D. Bryman, Talk at “Mini-Conference on Low Energy Tests of Conservation Law”, (1983).

    Google Scholar 

  53. T. Yamazaki et al., KEK Preprint (1983).

    Google Scholar 

  54. I.I. Bigi and J. M. Frere, Phys. Lett. 110B, 255 (1982).

    ADS  Google Scholar 

  55. J. Donoghue and B. Holstein, Phys. Lett. 113B, 383 (1982).

    ADS  Google Scholar 

  56. G. Beali, M. Bender and A. Soni, Phys. Rev. Lett 48, 848 (1982).

    Article  ADS  Google Scholar 

  57. Earliest use of vacuum saturation of short distance contribution to KL-KS mass difference was by: R. N. Mohapatra, J. S. Rao and R. E. Marshak, Phys. Rev. 171, 1502 (1968) and B. L. Ioffe and E. Shabalin, Sov. Jour. Nuc. Phys. 6, 328 (1967).

    Article  ADS  Google Scholar 

  58. M. K. Gaillard and B. W. Lee, Phys. Rev. D10, 897 (1974).

    ADS  Google Scholar 

  59. See J. Trampetic, Phys. Rev. D27, 1565 (1983) for a discussion of this point.

    ADS  Google Scholar 

  60. R. N. Mohapatra, G. Senjanović and M. Tran, Phys. Rev. D28, 546 (1983).

    ADS  Google Scholar 

  61. G. Ecker, W. Grimus and H. Neufeld, CERN Preprint-TH 3551 (1983).

    Google Scholar 

  62. M. Hwang and R. J. Oakes, Fermi-Lab Preprints 83/38-THY (1983).

    Google Scholar 

  63. H. Harari and M. Leurer, Fermi Lab Preprint 83/59-Thy (1983).

    Google Scholar 

  64. F. Gilman and M. Reno, Phys. Lett B (to appear) (1983).

    Google Scholar 

  65. L. Wolfenstein, Nuc. Phys. B160, 1979 (1981).

    Google Scholar 

  66. C. Hill, Phys. Lett. 97B, 275 (1980).

    ADS  Google Scholar 

  67. R. N. Mohapatra, F. E. Paige and D. P. Sidhu, Phys. Rev. D17, 2642 (1978).

    Google Scholar 

  68. A. Datta and A. Raychaudhuri, Calcutta Preprints CU PP/82-7, 82-8 (1982).

    Google Scholar 

  69. F. Olness and M. E. Ebel, Wisconsin Preprint (1983).

    Google Scholar 

  70. T. Rizzo, Iowa Preprint (1983).

    Google Scholar 

  71. T. Rizzo and G. Senjanović, ref. 22.

    Google Scholar 

  72. W. Y. Keung and G. Senjanović, Phys. Rev. Lett. 50, 1427 (1983).

    Article  ADS  Google Scholar 

  73. K. Winter, Phys. Lett. B (to appear).

    Google Scholar 

  74. V. Lubimov et al Phys. Lett. 94B, 266 (1980).

    ADS  Google Scholar 

  75. D.C. Lu et al, Phys. Rev. Letters, 45 1066 (1980)

    Article  ADS  Google Scholar 

  76. M. Daum et al, Phys. Rev. D20, 2692 (1979).

    ADS  Google Scholar 

  77. W. Bacino et al, Phys. Rev. Lett. 42, 749 (1979).

    Article  ADS  Google Scholar 

  78. For a review, see H. H. Williams, “Proceedings of the SLAC summer school, (1982), ed by M. Zipf.

    Google Scholar 

  79. For a pedagogical review, see, R. N. Mohapatra, Forschritte der Phys. 31, 185 (1983).

    Article  ADS  Google Scholar 

  80. D. Dicus, E. Kolb, V. Teplitz and R. Wagoner, Phys. Rev. D18, 1819 (1978).

    ADS  Google Scholar 

  81. Y. Chikashige, R. N. Mohapatra and R. Peccei, Phys. Rev. Lett. 45, 1926 (1981).

    Article  ADS  Google Scholar 

  82. R. N. Mohapatra and J. D. Vergados, Phys. Rev. Lett 47, 1713 (1981).

    Article  ADS  Google Scholar 

  83. C. Piccioto and M. Zahir, Phys. Rev. D26, 2320 (1982).

    ADS  Google Scholar 

  84. B. Kayser, Phys. Rev. D26, 1662 (1982).

    ADS  Google Scholar 

  85. L. Wolfenstein, Phys. Lett. 107B, 77 (1981).

    ADS  Google Scholar 

  86. J. Valle, Phys. Rev. D27, 1672 (1983)

    ADS  Google Scholar 

  87. S. Petcov, Phys. Lett. 110B, 245 (1982): M. Doi, M. Kenmoku, T. Kotani, H. Nishiura and E. Taskasugi, Osaka Preprint OS-GE-83-48 (1983).

    ADS  Google Scholar 

  88. K. M. Case, Phys. Rev. 107, 307 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  89. Since the second stage of symmetry breaking also induces a non-zero vev for the Higgs fields ΔL. i. e., the actual form of Mν is: which gives, mν= (γf2-h2) κ2/fvR. The important point to note, however, is that as VR ➝ ∞, mν ➝ 0.

    Google Scholar 

  90. M. Roncadelli and G. Senjanović, Phys. Lett 107B, 59 (1983).

    ADS  Google Scholar 

  91. P. Pal, Carnegie-Mellon Preprint (1983).

    Google Scholar 

  92. Y. Hosotani, Nuc. Phys. B191, 411 (1981)

    Article  ADS  Google Scholar 

  93. J. Schecter and J. W. F. Valle, Phys. Rev. D25, 774 (1982).

    ADS  Google Scholar 

  94. Riazuddin, R.N. Mohapatra and R.E. Marshak, Phys. Rev. D24, 1310 (1981).

    ADS  Google Scholar 

  95. H. Primakoff and S.P. Rosen, Rept. Prog. Phys. 22, 121 (1959)

    Article  ADS  Google Scholar 

  96. Proc. Phys. Soc. (London) 78, 464 (1961); A. Halprin, P. Minkowski, H. Primakoff and S. P. Rosen, Phys. Rev. D13 2567 (1976)

    Google Scholar 

  97. M. Doi, T. Kotani, H. Nishiura, K. Okuda and E. Takasugi, Prog. Theor. Phys. 66 1765 (1981) 68, 348 (1982)(E)

    Article  ADS  Google Scholar 

  98. W. C. Haxton, G. J. Stephenson, Jr. and D. Strottman, Phjys. Rev. Lett. 47, 153 (1981)

    Article  ADS  Google Scholar 

  99. Phys. Rev. D25, 2360 (1982)

    Google Scholar 

  100. J. D. Vergados, Phys. Rev. C24, 640 (1981).

    ADS  Google Scholar 

  101. F. Avignone et al: Talk at “Fourth Workshop on Grandunification”, held in Philadelphia (1983)

    Google Scholar 

  102. E. Fiorini, Proceedings of XXI international conference on high energy physics, Paris, 1982.

    Google Scholar 

  103. This point is being studied by R. N. Mohapatra and G. Senjanović in response to a question raised by G. Beali.

    Google Scholar 

  104. R. N. Mohapatra and J. C. Pati, Ref. 6.

    Google Scholar 

  105. G. Beali and A. Soni, Phys. Rev. Lett. 47, 552 (1981). G. Ecker, M. Grimus and H. Neufeld, CERN Preprint, 1983.

    Article  ADS  Google Scholar 

  106. A. Masiero, R. N. Mohapatra and R. D. Peccei, Nuc. Phys. B192, 66 (1981).

    Article  ADS  Google Scholar 

  107. G. Branco, J. M. Frere and J. M. Gerard, Nuc. Phys. B221, 317 (1983).

    Article  ADS  Google Scholar 

  108. M.A.B. Bég and H. S. Tsao, Phys. Rev. Lett. 41, 278 (1978)

    Article  ADS  Google Scholar 

  109. R. N. Mohapatra and G. Senjanović, Phys. Lett. 79B, 283 (1978).

    ADS  Google Scholar 

  110. This connection was realized in a composite model by H. Harari, R. N. Mohapatra and N. Seiberg, Nuc. Phys. B209, 174 (1982).

    Google Scholar 

  111. A Higgs model realization of this idea has been discussed recently by J. C. Pati, A. Salam and U. Sarkar, U. of Md. Preprint (1983).

    Google Scholar 

  112. For review of the theory and phenomenology of neutron-antineutron oscillation, see R. N. Mohapatra, Proceedings of the “Harvard Workshop on oscillations” ed by M. Goodman et al. (1982).

    Google Scholar 

  113. W. Caswell, J. Milutinović and G. Senjanović, Phys. Lett. B. S. Rao and R. Shrock, Stonybrook Preprint (1983).

    Google Scholar 

  114. J. Pasupathy, Phys. Lett. B (to be published).

    Google Scholar 

  115. S. Rao and R. Shrock, Phys. Lett. 116B, 238 (1982).

    ADS  Google Scholar 

  116. U. Sarkar and S. P. Misra, Phys. Rev. D28, 249 (1983).

    ADS  Google Scholar 

  117. K. Chetyrkin et al., Phys. Lett. 99B, 358 (1981).

    MathSciNet  ADS  Google Scholar 

  118. P. G. Sandars, J. Phys. G 6, L161 (1980).

    Article  ADS  Google Scholar 

  119. Riazuddin, Phys. Rev. D25, 885 (1982).

    Google Scholar 

  120. C. Dover, M. Gal and J. Richards, Phys. Rev. D27, 1090 (1983).

    ADS  Google Scholar 

  121. W. Alberico et al, Phys. Lett. 114B, 266 (1982).

    ADS  Google Scholar 

  122. R. Bionta et al., Phys. Rev. Lett. 51, 27 (1983).

    Article  ADS  Google Scholar 

  123. Two sources of ambiguities are (i) additional decay processes such as p + n ➝ pions discussed in ref. 75 and (ii) nuclear renormalization effects on δm discussed by P.K. Kabir, Harvard preprint (1983).

    Google Scholar 

  124. M. Baldoceoin et al., CERN Preprint (1983).

    Google Scholar 

  125. M. Goodman et al., Harvard-Oakridge Proposal (1982).

    Google Scholar 

  126. H. Georgi, in “Particles and Fields” edited by C. E. Carlson, H. Fritzsch and P. Minkowksi, Ann. of Phys. 93, 193 (1975).

    Google Scholar 

  127. M. Chanowitz, J. Ellis and M. K. Gaillard, Nuc. Phys. B128, 506 (1977)

    Article  ADS  Google Scholar 

  128. H. Georgi and D. Nanopoulos, Nuc. Phys. B155, 52 (1979)

    Article  ADS  Google Scholar 

  129. R. N. Mohapatra and B. Sakita, Phys. Rev. D21, 1062 (1980).

    MathSciNet  ADS  Google Scholar 

  130. See ref. 4.

    Google Scholar 

  131. The possibility of gL ≠gR at the phenomenological level, to study neutral current data have been considered earlier by: M.K. Parida and A. Raichoudhury, Phys. Rev. D26, 2305 (1982)

    Google Scholar 

  132. S. Rajpoot, Phys. Lett. 108B, 303 (1982).

    ADS  Google Scholar 

  133. F. del Aguila and L. Ibanez, Nuc. Phys. B177, 60 (1981)

    Article  ADS  Google Scholar 

  134. R. N. Mohapatra and G. Senjanović, Phys. Rev. D27, 1601 (1983).

    ADS  Google Scholar 

  135. A. Sokorać, Phys. Rev. D28, 2329 (1983).

    ADS  Google Scholar 

  136. R. N. Mohapatra and G. Senjanović, Phys. Rev. Lett. 49, 7 (1982).

    Article  ADS  Google Scholar 

  137. L. Arnellos and W. Marciano, Phys. Rev. Lett. 48, 1708 (1982).

    Article  ADS  Google Scholar 

  138. R.N. Mohapatra and B. Sakita, Phys. Rev. D21, 1062 (1980).

    MathSciNet  ADS  Google Scholar 

  139. F. Wilczek and A. Zee, Phys. Rev. D25, 553 (1982).

    ADS  Google Scholar 

  140. S. Nandi, A. Stern and E.C.G. Sudarshan, Phys. Rev. D.

    Google Scholar 

  141. J.C. Pati, A. Salam and J. Strathdee, Nuc. Phys. B185, 445 (1981).

    Article  ADS  Google Scholar 

  142. R. N. Mohapatra and M. Popović, Phys. Rev. D25, 3012 (1982).

    ADS  Google Scholar 

  143. A. Raichaudhury and U. Sarkar, Phys. Rev. D26, 3212 (1982).

    ADS  Google Scholar 

  144. A. Mohanty, Nuc. Phys. B (to appear) (1983).

    Google Scholar 

  145. T. Rizzo and G. Senjanović, Phys. Rev. D24, 704 (1981).

    ADS  Google Scholar 

  146. O.W. Greenberg, R.N. Mohapatra and M. Yasue, Phys. Rev. Lett. 51, 1737 (1983).

    Article  ADS  Google Scholar 

  147. Y. Tosa and R.E. Marshak, Phys. Rev. D26, 203 (1982).

    ADS  Google Scholar 

  148. M.G.K. Menon, Proceedings of the Fourth Workshop on Grand Unification, (1983) (to be published).

    Google Scholar 

  149. M. L. Cherry et al, phys. Rev. Lett. 47, 1507 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mohapatra, R.N. (1985). Left-Right Symmetric Models of Weak Interactions: A Review. In: Fritzsch, H., Peccei, R.D., Saller, H., Wagner, F. (eds) Quarks, Leptons, and Beyond. NATO ASI Series, vol 122. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2254-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2254-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2256-4

  • Online ISBN: 978-1-4899-2254-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics