Soluble Excipients Assisting Dissolution of Drugs: Importance of Amorphous State

  • Josef Pitha
Part of the Polymer Science and Technology book series (POLS, volume 32)


The absorption of drugs from solid state preparations can be improved by additives which increase their rates of dissolution. Three new classes of additives/solubilizers were developed. (1) Polymethionine sulfoxide: this polymer has all the structural elements of the powerful solvent dimethyl sulfoxide and some of its solubilizing power; the undesired bioeffects of the dimethyl sulfoxide were suppressed. (2) Hydroxyalkyldigitonin: the saponin, digitonin, was condensed with epoxides and this substitution increased the solubility and suppressed the toxicity of the parent compound. (3) Cy-clodextrins substituted with alkyl or 2-hydroxyalkyl groups: these compounds had considerably higher water solubility than the parent cyclodextrins; also, their inclusion complexes with drugs were very soluble.


Bile Acid Dimethyl Sulfoxide Inclusion Complex Propylene Oxide High Water Solubility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. H. Fincher, J. Pharm. Sci., 57, 1825 (1968).CrossRefGoogle Scholar
  2. 2.
    J. Haleblian and W. McCrone, J. Pharm. Sci., 58, 911 (1969).CrossRefGoogle Scholar
  3. 3.
    S. G. Frank, J. Pharm. Sci., 64, 1585 (1975).CrossRefGoogle Scholar
  4. 4.
    H. Imaizumi, N. Nambu, and T. Nagai, Chem. Pharm. Bull., 31, 2510 (1983).CrossRefGoogle Scholar
  5. 5.
    O. I. Corrigan and E. M. Holahan, J. Pharm. Pharmacol., 36, 217 (1984).CrossRefGoogle Scholar
  6. 6.
    A. Baker and C. I. Jarowski, J. Pharm. Sci., 72, 708 (1983).CrossRefGoogle Scholar
  7. 7.
    S. Stavchansky and W. G. Gowan, J. Pharm. Sci., 73, 733 (1984).CrossRefGoogle Scholar
  8. 8.
    A. P. Simonelli, S. C. Mehta, and W. I. Higuchi, J. Pharm. Sci., 58, 538 (1969).CrossRefGoogle Scholar
  9. 9.
    A. P. Simonelli, S. C. Mehta, and W. I. Higuchi, J. Pharm. Sci., 65, 355 (1976).CrossRefGoogle Scholar
  10. 10.
    O. I. Corrigan, M. A. Farrar, and W. I. Higuchi, Int. J. Pharm., 5, 229 (1980).CrossRefGoogle Scholar
  11. 11.
    W. L. Chiou and S. Riegelman, J. Pharm. Sci., 60, 1281 (1971).CrossRefGoogle Scholar
  12. 12.
    E. Shefter and K. C. Cheng, Int. J. Pharm., 6, 179 (1980).CrossRefGoogle Scholar
  13. 13.
    H. Sekikawa, M. Nakano, and T. Arita, Chem. Pharm. Bull., 27, 1223 (1979).CrossRefGoogle Scholar
  14. 14.
    A. A. Badaw and A. A. El Sayed, J. Pharm. Sci., 69, 492 (1980).CrossRefGoogle Scholar
  15. 15.
    J. Pitha, L. Szente, and J. Greenberg, J. Pharm. Sci., 72, 665 (1983).CrossRefGoogle Scholar
  16. 16.
    C. Friend, W. Scher, J. G. Holland, and T. Sato, Proc. Natl. Acad. Sci., USA, 68, 378 (1971).Google Scholar
  17. 17.
    P.A. Marks and R. A. Rifkind, Ann. Rev. Biochem., 47, 419 (1978).CrossRefGoogle Scholar
  18. 18.
    C. Li, L. S. Rittmann, A. S. Tsiftsoglou, K. K. Bhargava, and A. C. Sartorelli, J. Med. Chem., 21, 874 (1978).CrossRefGoogle Scholar
  19. 19.
    E. Fibach, R. Gambari, P. A. Shaw, G. Maniatis, R. C. Reuben, S. Sassa, R. A. Rifkind, and P. A. Marks, Proc. Natl. Acad. Sci., USA, 76, 1906 (1979).ADSCrossRefGoogle Scholar
  20. 20.
    C. Palfrey, Y. Kimhi, and U. Z. Littauer, Biochem. Biophys. Res. Commun., 76, 937 (1977).CrossRefGoogle Scholar
  21. 21.
    J. F. Tallman, C. C. Smith, and R. C. Henneberry, Proc. Natl. Acad. Sci., USA, 74, 873 (1977).ADSCrossRefGoogle Scholar
  22. 22.
    A. F. Miranda, E. G. Nette, S. Khan, K. Brockbank, and M. Schonberg, Proc. Natl. Acad. Sci., USA, 75, 3826 (1978).ADSCrossRefGoogle Scholar
  23. 23.
    H. M. Blau and C. J. Epstein, Cell, 17, 95 (1979).CrossRefGoogle Scholar
  24. 24.
    K. H. Stenzel, R. Schwartz, A. L. Rubin, and A. Novogrodsky, Nature (London), 285, 106 (1980).ADSCrossRefGoogle Scholar
  25. 25.
    J. H. Greenberg and C. Oliver, Arch. Biochem. Biophys., 204, 1 (1980).CrossRefGoogle Scholar
  26. 26.
    J. Pitha and L. Szente, J. Pharm. Sci., 73, 240 (1984).CrossRefGoogle Scholar
  27. 27.
    M. R. Malinow, P. McLaughlin, and C. Stafford, Am. J. Clin. Nutr., 31, 814 (1978).Google Scholar
  28. 28.
    J. Szejtli, “Cyclodextrins and Their Inclusion Complexes”, Akademiai Kiado, Budapest, 1982.Google Scholar
  29. 29.
    W. Saenger, Angew. Chem. Internat. Ed., 19, 344 (1980).CrossRefGoogle Scholar
  30. 30.
    J. Pitha, S. Zawadzki, F. Chytil, D. Lotan, and R. Lotan, J. Natl. Cancer Inst., 65, 1011 (1980).Google Scholar
  31. 31.
    J. Pitha, Life Sci., 29, 307 (1981).CrossRefGoogle Scholar
  32. 32.
    J. Pitha and L. Szente in “Proceedings of the First International Symposium on Cyclodextrins”, J. Szejtli (ed.), D. Reidel Publ.Co., Dordrecht, Holland, 1981, p. 457.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Josef Pitha
    • 1
  1. 1.Macromolecular Chemistry SectionNational Institute on Aging/GRC, National Institutes of HealthBaltimoreUSA

Personalised recommendations