Acetylcholinesterase and Its Inhibition

  • R. D. O’Brien

Abstract

Acetylcholinesterase (AChE) (3.1.1.7) belongs to the very large group of enzymes called hydrolases, defined as enzymes which split substrates by the introduction of the elements of water. The hydrolases which split acetylcholine are called cholinesterases; they catalyze the reaction
$$ \begin{array}{*{20}{c}} {C{{H}_{3}}COOC{{H}_{2}}C{{H}_{2}}\mathop{N}\limits^{ + } {{{(C{{H}_{3}})}}_{3}}\mathop{ \to }\limits^{{{{H}_{2}}O}} C{{H}_{3}}CO{{O}^{ - }} + {{H}^{ + }} + HOC{{H}_{2}}C{{H}_{2}}\mathop{N}\limits^{ + } {{{(C{{H}_{3}})}}_{3}}} \\ {{\text{acetylcholine acetate choline}}} \\ \end{array} $$
(1)
The reaction is reversible, but under usual conditions it lies far to the right.

Keywords

Phenyl Acetate Anticholinesterase Activity Phenyl Carbamate Diethyl Phosphate Electrophilic Character 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharoni, A. H., and O’Brien, R. D., 1968, The inhibition of acetylcholinesterases by anionic organophosphorus compounds, Biochemistry 7:1538.PubMedCrossRefGoogle Scholar
  2. Aldridge, W. N., 1953, The differentiation of true and pseudocholinesterase by organophosphorus compounds, Biochem.J. 53:62.PubMedGoogle Scholar
  3. Aldridge, W. N., and Davison, A. N., 1952a, The inhibition of erythrocyte cholinesterase by tri-esters of phosphoric acid. 2. Diethyl p-nitrophenyl thiophosphate (E605) and analogues, Biochem. J. 52:663.PubMedGoogle Scholar
  4. Aldridge, W. N., and Davison, A. N., 1952b, The inhibition of erythrocyte cholinesterase by tri-esters of phosphoric acid. 1. E600 analogues, Biochem. J. 51:62.PubMedGoogle Scholar
  5. Aldridge, W. N., and Davison, A. N., 1953, The mechanism of inhibition of cholinesterases by organophosphorus compounds, Biochem. J. 55:763.PubMedGoogle Scholar
  6. Aldridge, W. N., and Reiner, E., 1972, Enzyme Inhibitors as Substrates, North-Holland/American Else vier, Amsterdam and New York.Google Scholar
  7. Becker, E. L., Fukuto, T. R., Boone, B., Canham, D. C., and Boger, E., 1963, The relationship of enzyme inhibitory activity to the structure of n-alkylphosphonate and phenylalkyl phosphonate esters, Biochemistry 2:72.PubMedCrossRefGoogle Scholar
  8. Belleau, B., Ditullio, V., and Tasai, Y.-H., 1970, Kinetic effects of leptocurares and pachycurares on the methanesulfonylation of acetylcholinesterase, Mol. Pharmacol 6:41.PubMedGoogle Scholar
  9. Berends, F., Posthumus, C. H., van der Sluys, I., and Deierkauf, F. A., 1959, The chemical basis of the “aging process” of DFP inhibited pseudocholinesterase, Biochim. Biophys. Acta 34:576.CrossRefGoogle Scholar
  10. Bernsohn, J., Barron, K. D., and Hedrick, M. T., 1963, Some properties of isozymes of brain acetylcholinesterase, Biochem. Pharmacol. 12:761.PubMedCrossRefGoogle Scholar
  11. Booth, G. M., and Lee, A. H., 1971, Distribution of cholinesterases in insects, Bull. WHO 44:91.PubMedGoogle Scholar
  12. Bracha, P., and O’Brien, R. D., 1970, Hydrophobic bonding of trialkyl phosphates and phosphorothiolates to acetylcholinesterase, Biochemistry 9:741.PubMedCrossRefGoogle Scholar
  13. Carpenter, C. P., Weil, C. S., Palm, P. E., Woodside, M. W., Nair, J. H., III, and Smyth, H. F., Jr., 1961, Mammalian toxicity of 1-naphthyl-N-methylcarbamate (sevin insecticide), J. Agr. Food Chem. 9:30.CrossRefGoogle Scholar
  14. Chadwick, L. E., 1963, Actions on insects and other invertebrates, in: Handbuch der experimentallen Pharmakologie, Ergaenzungswerk, Vol. 15, pp. 741-798, Springer, Berlin. Chiu, Y. C., and O’Brien, R. D., 1971, Separate binding sites on acetylcholinesterase for indophenyl and other esters, Pestic. Biochem. Physiol. 1:434.Google Scholar
  15. Davies, D. R., Holland, P., and Rumens, N. J., 1960, Relation between the chemical structure and neurotoxicity of alkyl organophosphorus compounds, Br. J. Pharmacol. 15:271.Google Scholar
  16. Davis, G. A., and Agranoff, B. W., 1968, Metabolic behavior of isozymes of acetylcholinesterase, Nature (London) 220:211.CrossRefGoogle Scholar
  17. DeCandole, C. A., Douglas, W. W., Evans, C. L., Holms, R., Spencer, K. E. V., Torrance, R. W., and Wilson, K. M., 1953, The failure of respiration in death by anticholinesterase poisoning, Br. J. Pharmacol. 8:466.Google Scholar
  18. Dittert, L. W., and Higuchi, T., 1963, Rates of hydrolysis of carbamate and carbonate esters in alkaline solution, J. Pharm. Sci. 52:852.PubMedCrossRefGoogle Scholar
  19. Eldefrawi, M. E., and O’Brien, R. D., 1967, Permeability of the abdominal nerve cord of the American cockroach, Periplaneta americana (L.), to quaternary ammonium salts, J. Exp. Biol. 46:1.Google Scholar
  20. Faeder, I. R., O’Brien, R. D., and Salpeter, M. M., 1970, A re-investigation of evidence for cholinergic neuromuscular transmission in insects, J. Exp. Zool. 173:187.PubMedCrossRefGoogle Scholar
  21. Fleisher, J. N., and Harris, L. W., 1965, Dealkylation as a mechanism for aging of cholinesterase after poisoning with pinacolyl methylphosphonofluoridate, Biochem. Pharmacol. 14:641.PubMedCrossRefGoogle Scholar
  22. Fukuto, T. R., and Metcalf, R. L., 1956, Structure and insecticidal activity of some diethyl substituted phenyl phosphates, J. Agr. Food Chem. 4:930.CrossRefGoogle Scholar
  23. Fukuto, T. R., and Metcalf, R. L., 1959, The effect of structure on the reactivity of alkylphosphonate esters, J. Am. Chem. Soc. 81:372.CrossRefGoogle Scholar
  24. Gazzard, M. F., Sainsbury, G. L., Swanson, D. W., Sellers, D., and Watts, P., 1974, The anticholinesterase ability of diethyl S n-propyl phosphorothiolate: Errors caused by the presence of an active impurity, Biochem. Pharmacol. 23:751.PubMedCrossRefGoogle Scholar
  25. Harlow, P. A., 1958, The action of drugs on the nervous system of the locust (Locusta migratoria), Ann. Appl. Biol. 46:55.CrossRefGoogle Scholar
  26. Hart, G. J., and O’Brien, R. D., 1973, Recording spectrophotometric method for determination of dissociation and phosphorylation constants for the inhibition of acetylcholinesterase by organophosphates in the presence of substrate, Biochemistry 12:2940.PubMedCrossRefGoogle Scholar
  27. Hart, G. J., and O’Brien, R. D., 1974, Stopped-flow studies of the inhibition of acetylcholinesterase by organophosphates in the presence of substrate, Pestic. Biochem. Physiol. 4:239.CrossRefGoogle Scholar
  28. Hart, G. J., and O’Brien, R. D., 1975, Trialkyl phosphates and phosphorothiolates—Lack of hydrophobic interaction with acetylcholinesterase, Biochem. Pharmacol. 24:540.PubMedCrossRefGoogle Scholar
  29. Hellenbrand, K., and Krupka, R. M., 1970, Kinetic studies on the mechanism of insect acetylcholinesterase, Biochemistry 9:4665.PubMedCrossRefGoogle Scholar
  30. Hetnarski, B., and O’Brien, R. D., 1972, The role of charge-transfer complex formation in the inhibition of acetylcholinesterases by aromatic carbamates, Pestic. Biochem. Physiol. 2:132.CrossRefGoogle Scholar
  31. Hetnarski, B., and O’Brien, R. D., 1973, Charge-transfer in cholinesterase inhibition: Role of the conjugation between carbamyl and aryl groups of aromatic carbamates, Biochemistry 12:3883.PubMedCrossRefGoogle Scholar
  32. Hetnarski, B., and O’Brien, R. D., 1975a, The charge-transfer constant; a new substituent constant for structure-activity relationships, J. Med. Chem. 18:29.PubMedCrossRefGoogle Scholar
  33. Hetnarski, B., and O’Brien, R. D., 1975b, Electron-donor and affinity constants and their application to the inhibition of acetylcholinesterase by carbamates, J. Agr. Food Chem. 23:709.CrossRefGoogle Scholar
  34. Hobbiger, F., 1955, Effect of nicotinhydroxamic acid methiodide on human plasma cholinesterase inhibited by organophosphates containing a dialkylphosphate group, Br. J. Pharmacol 10:356.Google Scholar
  35. Hobbiger, F., 1957, Protection against the lethal effects of organophosphates by pyridine-2-aldoxime methiodide, Br. J. Pharmacol. 12:438.Google Scholar
  36. Kabachnik, M. I., Brestkin, A. P., Godovikov, N. N., Michelson, M. J., Rozengart, E. V., and Rozengart, V. I., 1970, Hydrophobic areas on the active surface of cholinesterases, Pharmacol. Rev. 22:255.Google Scholar
  37. Ketelaar, J. A. A., 1953, Chemical structure and insecticidal activity of organic phosphorus compounds, Trans. 9th Int. Congr. Entomol. 1951 2:318.Google Scholar
  38. Kitz, R. J., Braswell, L. M., and Ginsburg, S., 1970, On the question: Is acetylcholinesterase an allosteric protein? Mol. Pharmacol. 6:108.PubMedGoogle Scholar
  39. Kolbezen, M. J., Metcalf, R. L., and Fukuto, T. R., 1954, Insecticidal activity of carbamate cholinesterase inhibitors, J. Agr. Food Chem. 2:864.CrossRefGoogle Scholar
  40. Lawler, H. C., 1961, Turnover time of acetylcholinesterase, J. Biol. Chem. 236:2296.PubMedGoogle Scholar
  41. Main, A. R., 1964, Affinity and phosphorylation constants for the inhibition of esterases by organophosphates, Science 144:992.PubMedCrossRefGoogle Scholar
  42. Main, A. R., and Iverson, F. I., 1966, Measurement of the affinity and phosphorylation constants governing irreversible inhibition of cholinesterases by di-isopropyl phosphorofluoridate, Biochem. J. 100:525.PubMedGoogle Scholar
  43. Mayer, R. T., and Himel, C. M., 1972, Dynamics of fluorescent probe-cholinesterase reactions, Biochemistry 11:2082.PubMedCrossRefGoogle Scholar
  44. Mengle, D. C., and O’Brien, R. D., 1960, The spontaneous and induced recovery of the fly brain cholinesterase after inhibition by organophosphates, Biochem. J. 75:201.PubMedGoogle Scholar
  45. Metcalf, R. L., and Fukuto, T. R., 1965, Effect of chemical structure on intoxication and detoxication of phenyl N-methylcarbamates in insects, J. Agr. Food Chem. 13:220.CrossRefGoogle Scholar
  46. Miller, T., and Kennedy, J. M., 1972, Flight motor activity of houseflies as affected by temperature and insecticides, Pestic. Biochem. Physiol. 2:206.CrossRefGoogle Scholar
  47. O’Brien, R. D., 1960, Toxic Phosphorus Esters, Academic Press, New York.Google Scholar
  48. O’Brien, R. D., 1961, Esterase inhibition in organophosphorus poisoning of houseflies, J. Econ. Entomol. 54:1161.Google Scholar
  49. O’Brien, R. D., 1968, Kinetics of the carbamylation of cholinesterase, Mol. Pharmacol. 4:121.PubMedGoogle Scholar
  50. O’Brien, R. D., 1969, Binding sites of cholinesterases—Alkylation by an aziridinium derivative, Biochem. J. 113:713.PubMedGoogle Scholar
  51. O’Brien, R. D., 1971, The design of organophosphate and carbamate inhibitors of cholinesterases, in: Drug Design (E. J. Ariens, ed.), pp. 162–212, Academic Press, New York.Google Scholar
  52. O’Brien, R. D., Hilton, B. D., and Gilmour, L., 1966, The reaction of carbamates with cholinesterase, Mol. Pharmacol. 2:593.PubMedGoogle Scholar
  53. O’Connor, A. K., O’Brien, R. D., and Salpeter, M. M., 1965, Pharmacology and fine structure of peripheral muscle innervation in the cockroach Periplaneta americana, J. Insect Physiol. 11:1351.PubMedCrossRefGoogle Scholar
  54. Purdie, J. E., and Mclvor, R. A., 1966, The properties of acetylcholinesterase modified by interaction with the alkylating agent N, N-dimethyl-2-phenylaziridinium ion, Biochim. Biophys. Acta 128:590.CrossRefGoogle Scholar
  55. Roufogalis, B. D., and Thomas, J., 1968, The acceleration of acetylcholinesterase activity at low ionic strength by organic and inorganic cations, Mol. Pharmacol. 4:181.PubMedGoogle Scholar
  56. Soeda, Y., Eldefrawi, M. E., and O’Brien, R. D., 1975, Lobster axon acetylcholinesterase: A comparison with acetylcholinesterases of bovine erythrocytes, housefly head and Torpedo electroplax, Comp. Biochem. Physiol. 50C:163.Google Scholar
  57. Spencer, E. Y., and O’Brien, R. D., 1953, Enhancement of anticholinesterase activity in octamethylpyrophosphoramide by chlorine, J. Agr. Food Chem. 1:716.CrossRefGoogle Scholar
  58. Tripathi, R. K., 1976, Relation of acetylcholinesterase sensitivity to cross-resistance of a resistant housefly strain to organophosphates and carbamates, Pestic. Biochem. Physiol., in press.Google Scholar
  59. Tripathi, R. K., and O’Brien, R. D., 1973a, Effects of organophosphates in vivo upon acetylcholinesterase isozymes from housefly head and thorax, Pestic. Biochem. Physiol. 2:418.CrossRefGoogle Scholar
  60. Tripathi, R. K., and O’Brien, R. D., 1973b, Insensitivity of acetylcholinesterase as a factor in resistance to the organophosphate RabonR in houseflies, Pestic. Biochem. Physiol. 3:495.CrossRefGoogle Scholar
  61. Tripathi, R. K., Chiu, Y. G., and O’Brien, R. D., 1973, Reactivity in vitro towards substrates and inhibitors of acetylcholinesterase isozymes from electric eel electroplax and housefly brain, Pestic. Biochem. Physiol. 3:55.CrossRefGoogle Scholar
  62. van Asperen, K., and Dekhuijzen, H. M., 1958, Quantitative analysis of the kinetics of cholinesterase inhibition in tissue homogenate of mice and houseflies, Biochim. Biophys. Acta 28:603.CrossRefGoogle Scholar
  63. Wigglesworth, V. B., 1958, The distribution of esterase in the nervous system and other tissues of insect Rhodnius prolixus, Quart. J. Microsc. Sci. 99:441.Google Scholar
  64. Wilson, I. B., 1951, Acetylcholinesterase. XI. Reversibility of tetraethyl pyrophosphate inhibition, J. Biol. Chem. 190:111.PubMedGoogle Scholar
  65. Wilson, I. B., Harrison, M. A., and Ginsburg, S., 1961, Carbamyl derivatives of acetylcholinesterase, J. Biol. Chem. 236:1498.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • R. D. O’Brien
    • 1
  1. 1.Section of Neurobiology and BehaviorCornell UniversityIthacaUSA

Personalised recommendations