Microsomal Oxidation and Insecticide Metabolism

  • Tsutomu Nakatsugawa
  • Michael A. Morelli

Abstract

Once in the animal body, organic insecticides are subject to metabolism by a variety of enzymes. Depending on their chemical structure, the compounds may be hydrolyzed, oxidized, conjugated with endogenous metabolites, or otherwise modified. Of particular importance are reactions mediated by the oxidative enzymes known as microsomal oxidases, so called because of their localization in the microsomal fraction of cell homogenates. Since these enzymes as a class have an extremely broad spectrum of substrates and catalyze a wide variety of biotransformations, they play a central role in the metabolism of insecticides. In fact, most of the biodegradability of current insecticides is dependent on their successful biotransformation by microsomal oxidases of various species. These enzymes are also intimately associated with the phenomena of synergism, enzyme induction, and insecticide resistance.

Keywords

Liver Microsome Oxidative Metabolite Aromatic Hydroxylation Foreign Compound Piperonyl Butoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abernathy, C. O., Neda, K., Engel, J. L., Gaughan, L. C., and Casida, J. E., 1973, Substrate-specificity and toxicological significance of pyrethroid-hydrolyzing esterases of mouse liver microsomes, Pestic. Biochem. Physiol. 3:300.Google Scholar
  2. Agosin, M., and Perry, A. S., 1974, Microsomal mixed-function oxidases, in: The Physiology of Insecta, Vol. V (M. Rockstein, ed.), pp. 537–596, Academic Press, New York.Google Scholar
  3. Agosin, M., Michaeli, D., Miskus, R., Nagasawa, S., and Hoskins, W. M., 1961, A new DDT-metabolizing enzyme in the German cockroach, J. Econ. Entomol. 54:340.Google Scholar
  4. Agosin, M., Scaramelli, N., Gil, L., and Letelier, M. E., 1969, Some properties of the microsomal system metabolizing DDT in Triatoma infestans, Comp. Biochem. Physiol. 29:785.PubMedGoogle Scholar
  5. Alvares, A. P., Leigh, S., Kappas, A., Levin, W., and Conney, A. H., 1973, Induction of aryl hydrocarbon hydroxylase in human skin, Drug Metab. Dispos. 1:386.PubMedGoogle Scholar
  6. Amar-Costesec, A., Beaufay, H., Feytmans, E., Thinès-Sempoux, D., and Berthet, J., 1969, Subfractionation of rat liver microsomes, in: Microsomes and Drug Oxidations, (J. R. Gillette, A. H. Conney, G. J. Cosmides, R. W. Estabrook, J. R. Fouts, and G. J. Mannering, eds.), pp. 41–58, Academic Press, New York.Google Scholar
  7. Andrawes, N. R., Dorough, H. W., and Lindquist, D. A., 1967, Degradation and elimination of temik in rats, J. Econ. Entomol. 60:979.PubMedGoogle Scholar
  8. Appleton, H. T., and Nakatsugawa, T., 1972, Paraoxon deethylation in the metabolism of parathion, Pestic. Biochem. Physiol. 2:286.Google Scholar
  9. Autor, A. P., Kaschnitz, R. M., Heidema, J. K., Van Der Hoeven, T. A., Duppel, W., and Coon, M. J., 1973, Role of phospholipid in the reconstituted liver microsomal mixed function oxidase system containing cytochrome P-450 and NADPH-cytochrome P-450 reductase, Drug Metab. Dispos. 1:156.PubMedGoogle Scholar
  10. Axelrod, J., 1954, Enzymatic demethylation of sympathomimetic amines, Fed. Proc. 13:332.Google Scholar
  11. Baldwin, M. K., and Robinson, J., 1969, Metabolism in the rat of the photoisomerization product of dieldrin, Nature (London) 224:283.Google Scholar
  12. Baldwin, M. K., Robinson, J., and Parke, D. V., 1970, Metabolism of endrin in the rat, J. Agr. Food Chem. 18:1117.Google Scholar
  13. Ball, W. L., Sinclair, J. W., Crevier, M., and Kay, K., 1954, Modification of parathion’s toxicity for rats by pretreatment with chlorinated hydrocarbon insecticides, Can. J. Biochem. Physiol. 32:440.PubMedGoogle Scholar
  14. Baron, J., Hildebrandt, A. G., Peterson, J. A., and Estabrook, R. W., 1973, The role of oxygenated cytochrome P-450 and of cytochrome b 5 in hepatic microsomal drug oxidations, Drug Metab. Dispos. 1:129.PubMedGoogle Scholar
  15. Bass, S. W., Triolo, A. J., and Coon, J. M., 1972, Effect of DDT on the toxicity and metabolism of parathion in mice, Toxicol. Appl. Pharmacol. 22:684.PubMedGoogle Scholar
  16. Bend, J. R., Hook, G. E., and Gram, T. E., 1973, Characterization of lung microsomes as related to drug metabolism, Drub Metab. Dispos. 1:358.Google Scholar
  17. Benke, G. M., Wilkinson, C. F., and Telford, J. N., 1972, Microsomal oxidases in a cockroach, Gromphadorhina portentosa, J. Econ, Entomol. 65:1221.Google Scholar
  18. Blinn, R. C., 1969, Metabolic fate of abate insecticide in rat, J. Agr. Food Chem. 17:118.Google Scholar
  19. Booth, J., and Boyland, E., 1970, The metabolism of nicotine into two optically-active stereoisomers of nicotine-l’-oxide by animal tissues in vitro and by cigarette smokers, Biochem. Pharmacol. 19:733.PubMedGoogle Scholar
  20. Bowman, J. S., and Casida, J. E., 1958, Further studies on the metabolism of thimet by plants, insects, and mammals, J. Econ. Entomol. 51:838.Google Scholar
  21. Brattsten, L. B., and Wilkinson, C. F., 1973, A microsomal enzyme inhibitor in the gut contents of the house cricket (Acheta domesticus), Comp. Biochem. Physiol. 45B:59.Google Scholar
  22. Brodie, B. B., 1956, Pathways of drug metabolism, J. Pharm. Pharmacol. 8:1.PubMedGoogle Scholar
  23. Brodie, B. B., Gillette, J. R., and LaDu, B. N., 1958, Enzymatic metabolism of drugs and other foreign compounds, Ann. Rev. Biochem. 27:421.Google Scholar
  24. Brooks, G. T., 1972, Pathways of enzymatic degradation of pesticides, in: Environmental Quality and Safety (F. Coulston, and F. Korte, eds.), pp. 106–164, Academic Press, New York.Google Scholar
  25. Brooks, G. T., 1974 Chlorinated Insecticides, Vol. II, CRC Press, Cleveland.Google Scholar
  26. Brooks, G. T., and Harrison, A., 1967, The metabolism of dihydrochlordene and related compounds by housefly (M. domestica L.) and pig liver microsomes, Life Sci. 6:681.PubMedGoogle Scholar
  27. Brooks, G. T., and Harrison, A., 1969a, Hydration of HEOD (dieldrin) and the heptachlor epoxides by microsomes from the livers of pigs and rabbits, Bull. Environ. Contam. Toxicol. 4:352.Google Scholar
  28. Brooks, G. T., and Harrison, A., 1969, The oxidative metabolism of aldrin and dihydroaldrin by houseflies, housefly microsomes and pig liver microsomes and the effect of inhibitors, Biochem. Pharmacol. 18:557.PubMedGoogle Scholar
  29. Brooks, G. T., Harrison, A., and Cox, J. T., 1963, Significance of the epoxidation of the isomeric insecticides aldrin and isodrin by the adult housefly in vivo, Nature (London) 197:311.Google Scholar
  30. Brooks, G. T., Lewis, S. E., and Harrison, A., 1968, Selective metabolism of cyclodiene insecticide enantiomers by pig liver microsomal enzymes, Nature (London) 220:1034.Google Scholar
  31. Brooks, G. T., Harrison, A., and Lewis, S. E., 1970, Cyclodiene epoxide ring hydration by microsomes from mammalian liver and houseflies, Biochem. Pharmacol. 19:255.PubMedGoogle Scholar
  32. Biichi, G., Crombie, L., Godin, P. J., Kaltenbronn, J. S., Siddalingaiah, K. S., and Whiting, D. A., 1961, The absolute configuration of rotenone, J. Chem. Soc. 1961:2843.Google Scholar
  33. Bull, D. L., 1965, Metabolism of Di-Syston by insects, isolated cotton leaves, and rats, J. Econ. Entomol. 58:249.PubMedGoogle Scholar
  34. Bull, D. L., and Lindquist, D. A., 1964, Metabolism of 3-hydroxy-N, N-dimethylcrotonamide dimethyl phosphate by cotton plants, insects, and rats, J. Agr. Food Chem. 12:310.Google Scholar
  35. Bull, D. L., Lindquist, D. A., and Grabble, R. R., 1967, Comparative fate of the geometric isomers of phosphamidon in plants and animals, J. Econ. Entomol. 60:332.Google Scholar
  36. Burns, B., and Gurtner, G. H., 1973, A specific carrier for oxygen and carbon monoxide in the lung and placenta, Drug Metab. Dispos. 1:374.PubMedGoogle Scholar
  37. Camp, H. B., Fukuto, T. R., and Metcalf, R. L., 1969, Selective toxicity of isopropyl parathion. Metabolism in the housefly, honey bee, and white mouse, J. Agr. Food Chem. 17:249.Google Scholar
  38. Capdevila, J., Perry, A. S., Morello, A., and Agosin, M., 1973, Some spectral properties of cytochrome P-450 from microsomes isolated from control, phenobarbital-and naphthalenetreated houseflies, Biochim. Biophys. Acta 314:93.PubMedGoogle Scholar
  39. Casida, J. E., 1970, Mixed function oxidase involvement in the biochemistry of insecticide synergists, J. Agr. Food Chem. 18:753. Casida, J. E., Engel, J. L., Essac, E. G., Kamienski, F. X., and Kuwatsuka, S., 1966, Methylene-C14-dioxyphenyl compounds: Metabolism in relation to their synergistic action, Science 153:1130.Google Scholar
  40. Chaplin, M. D., and Mannering, G. J., 1970, Role of phospholipids in the hepatic microsomal drug-metabolizing system, Mol. Pharmacol. 6:631.PubMedGoogle Scholar
  41. Chapman, S. K., and Leibman, K. C., 1971, The effects of chlordane, DDT, and 3-methylcholanthrene upon the metabolism and toxicity of diethyl-4-nitrophenyl phosphorothionate (parathion), Toxicol. Appl. Pharmacol. 18:977.PubMedGoogle Scholar
  42. Chedid, A., and Nair, V., 1972, Diurnal rhythm in endoplasmic reticulum of rat liver: Electron microscopic study, Science 175:176.PubMedGoogle Scholar
  43. Claude, A., 1938, A fraction from normal chick embryo similar to the tumor producing fraction of chicken tumor I, Proc. Soc. Exp. Biol. Med. 39:398.Google Scholar
  44. Claude, A., 1943, The constitution of protoplasm, Science 97:451.PubMedGoogle Scholar
  45. Claude, A., 1969, Microsomes, endoplasmic reticulum and interactions of cytoplasmic membranes, in: Microsomes and Drug Oxidations (J. R. Gillette, A. H. Conney, G. J. Cosmides, R. W. Estabrook, J. R. Fouts, and G. J. Mannering, eds.), pp. 3–39, Academic Press, New York.Google Scholar
  46. Clemons, G. P., and Menzer, R. E., 1968, Oxidative metabolism of phosphamidon in rats and a goat, J. Agr. Food Chem. 16:312.Google Scholar
  47. Conney, A. H., and Kuntzman, R., 1971, Metabolism of normal body constituents by drug metabolizing enzymes in liver microsomes, in: Handbook of Experimental Pharmacology, Vol. XXVIII: Concepts in Biochemical Pharmacology, Part 2 (B. B. Brodie, and J. R. Gillette, eds.), pp. 401–421, Springer, Berlin.Google Scholar
  48. Coon, M. J., Strobel, H. W., and Boyer, R. F., 1973, On the mechanism of hydroxylation reactions catalyzed by cytochrome P-450, Drug Metab. Dispos. 1:92.PubMedGoogle Scholar
  49. Cooper, D. Y., and Salhanick, H. A., 1973, Multienzyme Systems in Endocrinology: Progress in Purification and Methods of Investigation, New York Academy of Sciences, New York.Google Scholar
  50. Cooper, D. Y., Levine, S., Narasimhulu, S., Rosenthal, O., and Estabrook, R. W., 1965, Photochemical action spectrum of the terminal oxidase of mixed function oxidase systems, Science 147:400.PubMedGoogle Scholar
  51. Cooper, D. Y., Schleyer, H., and Rosenthal, O., 1973, Chemistry of cytochrome P-450 purified from endocrine systems, Drug Metab. Dispos. 1:21.PubMedGoogle Scholar
  52. Dahm, P. A., and Nakatsugawa, T., 1968, Bioactivation of insecticides, in: Enzymatic Oxidations of Toxicants (E. Hodgson, ed.), pp. 89–110, North Carolina State University Press, Raleigh, N.C.Google Scholar
  53. Dallner, G., Siekevitz, P., and Palade, G. F., 1966, Biogenesis of endoplasmic reticulum membranes. II. Synthesis of constitutive microsomal enzymes in developing rat hepatocyte, J. Cell Biol. 30:97.PubMedGoogle Scholar
  54. Daly, J., 1971, Enzymatic oxidation at carbon, in: Handbook of Experimental Pharmacology, Vol. XXVIII: Concepts in Biochemical Pharmacology, Part 2 (B. B. Brodie and J. R. Gillette, eds.), pp. 285–311, Springer, Berlin.Google Scholar
  55. Daly, J., Guroff, G., Udenfriend, S., and Witkop, B., 1967, Hydroxylation-induced migrations of tritium in several substrates of liver aryl hydroxylases, Arch. Biochem. Biophys. 122:218.PubMedGoogle Scholar
  56. Dauterman, W. C., 1971, Biological and nonbiological modifications of organophosphorus compounds, Bull. WHO 44:133.PubMedGoogle Scholar
  57. Davidow, B., and Radomski, J. L., 1953, Isolation of an epoxide metabolite from fat tissues of dogs fed heptachlor, J. Pharmacol. Exp. Ther. 107:259.Google Scholar
  58. Davison, A. N., 1955, The conversion of schradan (OMPA) and parathion into inhibitors of cholinesterase by mammalian liver, Biochem. J. 61:203.PubMedGoogle Scholar
  59. Diggle, W. M., and Gage, J. C., 1951, Cholinesterase inhibition by parathion in vivo, Nature (London) 168:998.Google Scholar
  60. Dinamarca, M. L., Agosin, M., and Neghme, A., 1962, The metabolic fate of C14-DDT in Triatoma infestans, Exp. Parasitol. 12:61.PubMedGoogle Scholar
  61. Donninger, C., 1971, Species specificity of phosphate triester anticholinesterases, Bull. WHO 44:265.PubMedGoogle Scholar
  62. Donninger, C., Hutson, D. H., and Pickering, B. A., 1972, The oxidative dealkylation of insecticidal phosphoric acid triesters by mammalian liver enzymes, Biochem. J. 126:701.PubMedGoogle Scholar
  63. Dorough, H. W., 1968, Metabolism of Furadan (NIA-10242) in rats and houseflies, J. Agr. Food. Chem. 16:319.Google Scholar
  64. Dorough, H. W., and Casida, J. E., 1964, Nature of certain carbamate metabolites of the insecticide, Sevin, J. Agr. Food Chem. 12:294.Google Scholar
  65. Douch, P. G. C., and Smith, J. N., 1971a, Metabolism of m-tert.-butylphenyl N-methylcarbamate in insects and mice, Biochem. J. 125:385.PubMedGoogle Scholar
  66. Douch, P. G. C., and Smith, J. N., 1971, The metabolism of 3,5-di-tert.-butylphenyl N-methylcarbamate in insects and by mouse liver enzymes, Biochem, J. 125:395.Google Scholar
  67. DuBois, K. P., 1971, The toxicity of organophosphorus compounds to mammals, Bull. WHO 44:233.PubMedGoogle Scholar
  68. Elliott, M., Janes, N. F., Kimmel, E. G., and Casida, J. E., 1972, Metabolic fate of pyrethrin I, pyrethrin II, and allethrin administered orally to rats, J. Agr. Food Chem. 20:300.Google Scholar
  69. Ernster, L., and Orrenius, S., 1965, Substrate-induced synthesis of the hydroxylating enzyme system of liver microsomes, Fed. Proc. 24:1190.PubMedGoogle Scholar
  70. Ernster, L., and Orrenius, S., 1973, Dynamic organization of endoplasmic reticulum membranes, Drug Metab. Dispos. 1:66.PubMedGoogle Scholar
  71. Estabrook, R. W., and Cohen, B., 1969, Organization of the microsomal electron transport system, in: Microsomes and Drug Oxidations (J. R. Gillette, A. H. Conney, G. J. Cosmides, R. W. Estabrook, J. R. Fouts, and G. J. Mannering, eds.), pp. 95–109, Academic Press, New York.Google Scholar
  72. Estabrook, R. W., Cooper, D. Y., and Rosenthal, O., 1963, The light reversible carbon monoxide inhibition of the steroid C21-hydroxylase system of the adrenal cortex, Biochem. Z. 338:741.PubMedGoogle Scholar
  73. Estabrook, R. W., Hildebrandt, A. G., Baron, J., Netter, K. J., and Leibman, K., 1971, A new spectral intermediate associated with cytochrome P-450 function in liver microsomes, Biochem. Biophys. Res. Commun. 42:132.PubMedGoogle Scholar
  74. Estabrook, R. W., Gillette, J. R., and Leibman, K. C. (eds.), 1973a, Microsomes and Drug Oxidations, Williams and Wilkins, Baltimore.Google Scholar
  75. Estabrook, R. W., Matsubara, T., Mason, J. I., Werringloer, J., and Baron, J., 1913b, Studies on the molecular function of cytochrome P-450 during drug metabolism, Drug Metab. Dispos. 1:98.Google Scholar
  76. Fahmy, M. A. H., Metcalf, R. L., Fukuto, T. R., and Hennessy, D. J., 1966, Effects of deuteration, fluorination, and other structural modifications of the carbamyl moiety upon the anticholinesterase insecticidal activities of phenyl N-methylcarbamates, J. Agr. Food Chem. 14:79.Google Scholar
  77. Fujita, T., and Mannering, G. J., 1971, Differences in soluble P-450 hemoproteins from livers of rats treated with phenobarbital and 3-methylcholanthrene, Chem.-Biol. Interact. 3:264.PubMedGoogle Scholar
  78. Fukami, J., Yamamoto, I., and Casida, J. E., 1967, Metabolism of rotenone in vitro by tissue homogenates from mammals and insects, Science 155:713.PubMedGoogle Scholar
  79. Fukami, J., Shishido, T., Fukunaga, K., and Casida, J. E., 1969, Oxidative metabolism of rotenone in mammals, fish, and insects and its relation to selective toxicity, J. Agr. Food Chem. 17:1217.Google Scholar
  80. Gaudette, L. E., and Brodie, B. B., 1959, Relationship between the lipid solubility of drugs and their oxidation by liver microsomes, Biochem. Pharmacol. 2:89.PubMedGoogle Scholar
  81. Gillette, J. R., 1966, Biochemistry of drug oxidation and reduction by enzymes in hepatic endoplasmic reticulum, Advan. Pharmacol. 4:219.Google Scholar
  82. Gillette, J. R., and Kamm, J. J., 1960, The enzymatic formation of sulfoxides: The oxidation of chlorpromazine and 4,4′-diaminodiphenyl sulfide by guinea pig liver microsomes, J. Pharmacol. Exp. Ther. 130:262.PubMedGoogle Scholar
  83. Gillette, J. R., Conney, A. H., Cosmides, G. J., Estabrook, R. W., Fouts, J. R., and Mannering, G. J. (eds.), 1969, Microsomes and Drug Oxidations, Academic Press, New York.Google Scholar
  84. Gillette, J. R., Davis, D. C., and Sasame, H. A., 1972, Cytochrome P-450 and its role in drug metabolism, Ann. Rev. Pharmacol. 12:57.PubMedGoogle Scholar
  85. Gordon, H. T., 1961, Nutritional factors in insect resistance to chemicals, Ann. Rev. Entomol. 6:27.Google Scholar
  86. Gram, T. E., 1971, Enzymatic N-, O-, and S-dealkylation of foreign compounds by hepatic microsomes, in: Handbook of Experimental Pharmacology, Vol. XXVIII: Concepts in Biochemical Pharmacology, Part 2 (B. B. Brodie and J. R. Gillette, eds.), pp. 334–348, Springer, Berlin.Google Scholar
  87. Gram, T. E., and Fouts, J. R., 1968, Studies on the intramicrosomal distribution of hepatic enzymes which catalyze the metabolism of drugs and other foreign compounds, in: Enzymatic Oxidations of Toxicants (E. Hodgson, ed.), pp. 47–64, North Carolina State University, Raleigh, N.C.Google Scholar
  88. Greim, H., Schenkman, J. B., Klotzbücher, M., and Remmer, H., 1970, The influence of phenobarbital on the turnover of hepatic microsomal cytochrome b 5 and cytochrome P-450 hemes in the rat, Biochim. Biophys. Acta 201:20.PubMedGoogle Scholar
  89. Gunsalus, I. C., Meeks, J. R., and Lipscomb, J. D., 1973, Cytochrome P-450cam substrate and effector interactions, Ann. N.Y. Acad. Sci. 212:107.PubMedGoogle Scholar
  90. Guroff, G., and Daly, J., 1967, Quantitative studies on the hydroxylation-induced migration of deuterium and tritium during phenylalanine hydroxylation, Arch. Biochem. Biophys. 122:212.PubMedGoogle Scholar
  91. Guroff, G., Daly, J. W., Jerina, D. M., Renson, J., Witkop, B., and Udenfriend, S., 1967, Hydroxylation-induced migration: The NIH shift, Science 157:1524.PubMedGoogle Scholar
  92. Hamilton, G. A., Giacin, J. R., Hellman, T. M., Snook, M. E., and Weiler, J. W., 1973, Oxenoid models for enzymic hydroxylations, Ann. N. Y. Acad. Sci. 212:4.PubMedGoogle Scholar
  93. Hathway, D. E. (senior reporter), 1970, Foreign Compound Metabolism in Mammals, Vol. I, The Chemical Society, London.Google Scholar
  94. Hathway, D. E. (senior reporter), 1972, Foreign Compound Metabolism in Mammals, Vol. II, The Chemical Society, London.Google Scholar
  95. Hayaishi, O., 1962, History and scope, in: Oxygenases (O. Hayaishi, ed.), pp. 1–29, Academic Press, New York.Google Scholar
  96. Hildebrandt, A., and Estabrook, R. W., 1971, Evidence for the participation of cytochrome b 5 in hepatic microsomal mixed-function oxidation reactions, Arch. Biochem. Biophys. 143:66.PubMedGoogle Scholar
  97. Hlavica, P., and Kiese, M., 1969, N-Oxygenation of N-alkyl-and N, N-dialkylanilines by rabbit liver microsomes, Biochem. Pharmacol. 18:1501.PubMedGoogle Scholar
  98. Hodgson, E. (ed.), 1968, Enzymatic Oxidations of Toxicants, North Carolina State University, Raleigh, N.C.Google Scholar
  99. Hodgson, E., and Casida, J. E., 1960, Biological oxidation of N, N-dialkyl carbamates, Biochim. Biophys. Acta 42:184.PubMedGoogle Scholar
  100. Hodgson, E., and Plapp, F. W., Jr., 1970, Biochemical characteristics of insect microsomes, J. Agr. Food Chem. 18:1048.Google Scholar
  101. Holtzman, J. L., Gram, T. E., Gigon, P. L., and Gillette, J. R., 1968, The distribution of the components of mixed-function oxidase between the rough and the smooth endoplasmic reticulum of liver cells, Biochem. J. 110:407.PubMedGoogle Scholar
  102. Hucker, H. B., Gillette, J. R., and Brodie, B. B., 1960, Enzymatic pathway for the formation of cotinine, a major metabolite of nicotine in rabbit liver, J. Pharmacol. Exp. Ther. 129:94.PubMedGoogle Scholar
  103. Imai, Y., and Sato, R., 1967, Studies on the substrate interactions with P-450 in drug hydroxylation by liver microsomes, J. Biochem. 62:239.PubMedGoogle Scholar
  104. Ishimura, Y., Ullrich, V., and Peterson, J. A., 1971, Oxygenated cytochrome P-450 and its possible role in enzymic hydroxylation, Biochem. Biophys. Res. Commun. 42:140.PubMedGoogle Scholar
  105. Ivie, G. W., and Dorough, H. W., 1968, Furadan-C14 metabolism in a lactating cow, J. Agr. Food Chem. 16:849.Google Scholar
  106. Jerina, D. M., Daly, J. W., and Witkop, B., 1968, The role of arene oxide-oxepin systems in the metabolism of aromatic substrates. II. Synthesis of 3,4-toluene-4-2H oxide and subsequent “NIH shift” to 4-hydroxy toluene-3-2H, J. Am. Chem. Soc. 90:6523.PubMedGoogle Scholar
  107. Jerina, D. M., Daly, J. W., Witkop, B., Zaltzman-Nirenberg, P., and Udenfriend, S., 1969, 1,2-Naphthalene oxide as an intermediate in the microsomal hydroxylation of naphthalene, Biochemistry 9:147.Google Scholar
  108. Jones, A. R., 1970, Further metabolites of hexamethylphosphoramide, Biochem. Pharmacol 19:603.PubMedGoogle Scholar
  109. Jones, A. R., and Jackson, H., 1968, The metabolism of hexamethylphosphoramide and related compounds, Biochem. Pharmacol. 17:2247.PubMedGoogle Scholar
  110. Jori, A., DiSalle, E., and Santini, V., 1971, Daily rhythmic variation and liver drug metabolism in rats, Biochem. Pharmacol. 20:2965.PubMedGoogle Scholar
  111. Kamienski, F. X., and Casida, J. E., 1970, Importance of demethylenation in the metabolism in vivo and in vitro of methylenedioxyphenyl synergists and related compounds in mammals, Biochem. Pharmacol. 19:91.PubMedGoogle Scholar
  112. Kamin, H., and Masters, B. S. S., 1968, Electron transport in microsomes, in: Enzymatic Oxidations of Toxicants (E. Hodgson, ed.), pp. 5–26, North Carolina State University Press, Raleigh, N.C.Google Scholar
  113. Kapoor, I. P., Metcalf, R. L., Nystrom, R. F., and Sangha, G. K., 1970, Comparative metabolism of methoxychlor, methiochlor, and DDT in mouse, insects, and in a model ecosystem, J. Agr. Food Chem. 18:1145.Google Scholar
  114. Kapoor, I. P., Metcalf, R. L., Hirwe, A. S., Lu, P. Y., Coats, J. R., and Nystrom, R. F., 1972, Comparative metabolism of DDT, methylchlor, and ethoxychlor in mouse, insects, and in a model ecosystem, J. Agr. Food Chem. 20:1.Google Scholar
  115. Kato, R., Takanaka, A., and Shoji, H., 1969, Inhibition of drug-metabolizing enzymes of liver microsomes by hydrazine derivatives in relation to their lipid solubility, Jap. J. Pharmacol. 19:315.PubMedGoogle Scholar
  116. Keysell, G. R., Booth, J., Grover, P. L., Hewer, A., and Sims, P., 1973, The formation of “K-region” epoxides as hepatic microsomal metabolites of 7-methylbenz[a]anthracene and 7,12-dimethylbenz[a]anthracene and their 7-hydroxymethyl derivatives, Biochem. Pharmacol. 22:2853.PubMedGoogle Scholar
  117. Khan, M. A. Q., Rosen, J. D., and Sutherland, D. J., 1969, Insect metabolism of photoaldrin and photodieldrin, Science 164:318.PubMedGoogle Scholar
  118. King, D. S., 1972, Ecdysone metabolism in insects, Am. Zool. 12:343.Google Scholar
  119. Klein, A. K., Dailey, R. E., Walton, M. S., Beck, V., and Link, J. D., 1970, Metabolites isolated from urine of rats fed 14C-photodieldrin, J. Agr. Food Chem. 18:705.Google Scholar
  120. Knowles, C. O., and Sen Gupta, A. K., 1970, N-(4-Chloro-o-tolyl)-N, N-dimethylformamidine-14C (Galecron) and 4-chloro-o-toluidine-14C metabolism in the white rat, J. Econ. Entomol. 63:856.PubMedGoogle Scholar
  121. Knowles, C. O., and Shrivastava, S. P., 1973, Chlordimeform and related compounds: Toxicological studies with house flies, J. Econ. Entomol. 66:75.PubMedGoogle Scholar
  122. Korte, F., and Arent, H., 1965, Metabolism of insecticides, IX (1) isolation and identification of dieldrin metabolites from urine of rabbits after oral administration of dieldrin, Life Sci. 4:2017.PubMedGoogle Scholar
  123. Krieger, R. I., and Wilkinson, CF., 1970, An endogenous inhibitor of microsomal mixed-function oxidases in homogenates of the southern armyworm (Prodenia eridania), Biochem. J. 116:781.PubMedGoogle Scholar
  124. Krieger, R. I., and Wilkinson, C. F., 1971, The metabolism of 6,7-dihydroisodrin by microsomes and southern armyworm larvae, Pestic. Biochem. Physiol. 1:92.Google Scholar
  125. Krieger, R. I., Feeny, P. P., and Wilkinson, C. F., 1971, Detoxication enzymes in the guts of caterpillars: An evolutionary answer to plant defenses? Science 172:579.PubMedGoogle Scholar
  126. Ku, T. Y., and Dahm, P. A., 1973, Effect of liver enzyme induction on paraoxon metabolism in the rat, Pestic. Biochem. Physiol. 3:175.Google Scholar
  127. Kuriyama, Y., Omura, T., Siekevitz, P., and Palade, G. E., 1969, Effects of phenobarbital on the synthesis and degradation of the protein compounds of rat liver microsomal membranes, J. Biol. Chem. 244:2017.PubMedGoogle Scholar
  128. LaDu, B. N., Mandel, H. G., and Way, E. L. (eds.), 1971, Fundamentals of Drug Metabolism and Drug Disposition, Williams and Wilkins, Baltimore.Google Scholar
  129. Lake, B. G., Hopkins, R., Chakraborty, J., Bridges, J. W., and Parke, D. V., 1973, The influence of some hepatic enzyme inducers and inhibitors on extrahepatic drug metabolism, Drug Metab. Dispos. 1:342.PubMedGoogle Scholar
  130. Leeling, N. N., and Casida, J. E., 1966, Metabolites of carbaryl (1-naphthyl methylcarbamate) in mammals and enzymatic systems for their formation, J. Agr. Food Chem. 14:281.Google Scholar
  131. Lewis, J. B., 1969, Detoxication of diazinon by subcellular fractions of diazinon-resistant and susceptible houseflies, Nature (London) 224:917.Google Scholar
  132. Lipscomb, J. D., and Gunsalus, I. C., 1973, Structural aspects of the active site of cytochrome P-450cam, Drug Metab. Dispos. 1:1.PubMedGoogle Scholar
  133. Lu, A. Y. H., and Coon, M. J., 1968, Role of hemoprotein P-450 in fatty acid ω-hydroxylation in a soluble enzyme system from liver microsomes, J. Biol. Chem. 243:1331.PubMedGoogle Scholar
  134. Lu, A. Y. H., and Levin, W., 1972, Partial purification of cytochromes P-450 and P-448 from rat liver microsomes, Biochem. Biophys. Res. Commun. 46:1334.PubMedGoogle Scholar
  135. Lu, A. Y. H., Kuntzman, R., West, S., and Conney, A. H., 1971, Reconstituted liver microsomal enzyme system that hydroxylates drugs, other foreign compounds and endogenous substrates. I, Biochem. Biophys. Res. Commun. 42:1200.PubMedGoogle Scholar
  136. Lu, A. Y. H., West, S. B., Ryan, D., and Levin, W., 1973, Characterization of partially purified cytochromes P-450 and P-448 from rat liver microsomes, Drug Metab. Dispos. 1:29.PubMedGoogle Scholar
  137. Lucier, G. W., and Menzer, R. E., 1970, Nature of oxidative metabolites of dimethoate formed in rats, liver microsomes, and bean plants, J. Agr. Food Chem. 18:698.Google Scholar
  138. Lucier, G. W., and Menzer, R. E., 1971, Nature of neutral phosphorus ester metabolites of phosphamidon formed in rats and liver, microsomes, J. Agr. Food Chem. 19:1249.Google Scholar
  139. Machin, A. F., Quick, M. P., Rogers, H., and Anderson, P. H., 1971, The conversion of diazinon to hydroxydiazinon in the guinea-pig and sheep, Bull. Environ. Contam. Toxicol. 6:26.PubMedGoogle Scholar
  140. Machin, A. F., Quick, M. P., Rogers, H., and Janes, N. F., 1972, An isomer of hydroxydiazinon formed by metabolism in sheep, Bull Environ. Contam. Toxicol. 7:270.PubMedGoogle Scholar
  141. Mailman, R. B., and Hodgson, E., 1972, The cytochrome P-450 substrate optical difference spectra of pesticides with mouse hepatic microsomes, Bull. Environ. Contam. Toxicol. 8:186.PubMedGoogle Scholar
  142. Mannering, G. J., 1971, Microsomal enzyme systems which catalyze drug metabolism, in: Fundamentals of Drug Metabolism and Drug Disposition (B. N. LaDu, H. G. Mandel, and E. L. Way, eds.), pp. 206–252, Williams and Wilkins, Baltimore.Google Scholar
  143. Mannering, G. J., Kuwahara, S., and Omura, T., 1974, Immunochemical evidence for the participation of cytochrome b 5 in the NADH synergism of the NADPH-dependent monooxidase system of hepatic microsomes, Biochem. Biophys, Res. Commun. 57:476.Google Scholar
  144. March, R. B., Metcalf, R. L., Fukuto, T. R., and Maxon, M. G., 1955, Metabolism of Systox in the white mouse and American cockroach, J. Econ. Entomol. 48:355.Google Scholar
  145. Martin, Y. C., and Hansch, C., 1971, Influence of hydrophobic character on the relative rate of oxidation of drugs by rat liver microsomes, J. Med. Chem. 14:777.PubMedGoogle Scholar
  146. Mason, H. S., 1957, Mechanisms of oxygen metabolism, Advan. Enzymol. 19:79.Google Scholar
  147. Masters, B. S. S., Nelson, E. B., Schacter, B. A., Baron, J., and Isaacson, E. L., 1973, NADPH-cytochrome c reductase and its role in microsomal cytochrome P-450-dependent reactions, Drug Metab. Dispos. 1:121.PubMedGoogle Scholar
  148. Matthews, H. B., and Matsumura, F., 1969, Metabolic fate of dieldrin in the rat, J. Agr. Food Chem. 17:845.Google Scholar
  149. Matthews, H. B., and McKinney, J. D., 1974, Dieldrin metabolism to cis-dihydroaldrindiol and epimerization of cis-to frans-dihydroaldrindiol by rat liver microsomes, Drug Metab. Dispos. 2:333.PubMedGoogle Scholar
  150. Matthews, H. B., McKinney, J. D., and Lucier, G. W., 1971, Dieldrin metabolism, excretion, and storage in male and female rats, J. Agr. Food Chem. 19:1244.Google Scholar
  151. Mazel, P., and Henderson, J. F., 1965, On the relationship between lipid solubility and microsomal metabolism of drugs, Biochem. Pharmacol. 14:92.PubMedGoogle Scholar
  152. McBain, J. B., Yamamoto, I., and Casida, J. E., 1971a, Mechanism of activation and deactivation of Dyfonate (O-ethyl S-phenyl ethylphosphonodithioate) by rat liver microsomes, Life Sci. (Part II) 10:947.Google Scholar
  153. McBain, J. B., Yamamoto, I., and Casida, J. E., 1971a, Oxygenated intermediate in peracid and microsomal oxidations of the organophosphonothionate insecticide Dyfonate, Life Sci. (Part II) 10:1311.Google Scholar
  154. Mclntosh, E. N., Mitani, F., Uzgiris, V. I., Alonzo, C., and Salhanick, H. A., 1973, Comparative studies on mitochondrial and partially purified bovine corpus luteum cytochrome P-450, Ann. N.Y.Acad.Sci. 212:392.Google Scholar
  155. Menzer, R. E., and Casida, J. E., 1965, Nature of toxic metabolites formed in mammals, insects, and plants from 3-(dimethoxyphosphinyloxy)-N, N-dimethyl-cis-crotonamide and its N-methyl analog, J. Agr. Food Chem. 13:102.Google Scholar
  156. Metcalf, R. L., Fukuto, T. R., Collins, C., Borck, K., Burk, J., Reynolds, H. T., and Osman, M. F., 1966, Metabolism of 2-methyl-2-(methylthio)-propionaldehyde O-(methylcarbamoyl)-oxime in plant and insect, J. Agr. Food Chem. 14:579.Google Scholar
  157. Metcalf, R. L., Osman, M. F., and Fukuto, T. R., 1967, Metabolism of C14-labeled carbamate insecticides to C14O2 in the house fly, J. Econ. Entomol. 60:445.PubMedGoogle Scholar
  158. Metcalf, R. L., Fukuto, T. R., Collins, C., Borck, K., El-Azia, S. A., Munoz, R., and Cassil, C. C., 1968, Metabolism of 2,2-dimethyl-2,3-dihydrobenzofuranyl-7 N-methylcarbamate (Fura-dan) in plants, insects, and mammals, J. Agr. Food Chem. 16:300.Google Scholar
  159. Mitani, F., Alvares, A. P., Sassa, S., and Kappas, A., 1971, Preparation and properties of a solubilized form of cytochrome P-450 from chick embryo liver microsomes, Mol. Pharmacol. 7:280.PubMedGoogle Scholar
  160. Miyamoto, J., and Suzuki, T., 1973, Metabolism of tetramethrin in houseflies in vivo, Pestic. Biochem. Physiol. 3:30.Google Scholar
  161. Miyamoto, J., Yamamoto, K., and Matsumoto, T., 1969, Metabolism of 3,4-dimethylphenyl N-methylcarbamate in white rats, Agr. Biol. Chem. 33:1060.Google Scholar
  162. Morello, A., 1964, Role of DDT-hydroxylation in resistance, Nature (London) 203:785.Google Scholar
  163. Morello, A., 1965, Induction of DDT-metabolizing enzymes in microsomes of rat liver after administration of DDT, Can. J. Biochem. 43:1289.Google Scholar
  164. Motoyama, N., and Dauterman, W. C., 1972, The in vitro metabolism of azinphosmethyl by mouse liver, Pestic. Biochem. Physiol. 2:170.Google Scholar
  165. Mücke, W., Alt, K. O., and Esser, H. O., 1970, Degradation of 14C-labeled diazinon in the rat, J. Agr. Food Chem. 18:208.Google Scholar
  166. Murphy, S. D., and DuBois, K. P., 1957, Enzymatic conversion of the dimethoxy ester of benzotriazine dithiophosphoric acid to an anticholinesterase agent, J. Pharmacol. Exp. Ther. 119:572.PubMedGoogle Scholar
  167. Nair, V., and Casper, R., 1969, The influence of light on daily rhythm in hepatic drug metabolizing enzymes in rat, Life Sci. 8:1291.PubMedGoogle Scholar
  168. Nakatsugawa, T., and Dahm, P. A., 1967, Microsomal metabolism of parathion, Biochem. Pharmacol. 16:25.Google Scholar
  169. Nakatsugawa, T., and Nelson, P. A., 1972, Studies of insecticide detoxication in invertebrates: An enzymological approach to the problem of biological magnification, in: Environmental Toxicology of Pesticides (F. Matsumura, G. M. Boush, and T. Misato, eds.), pp. 501–524, Academic Press, New York.Google Scholar
  170. Nakatsugawa, T., Ishida, M., and Dahm, P. A., 1965, Microsomal epoxidation of cyclodiene insecticides, Biochem. Pharmacol. 14:1853.PubMedGoogle Scholar
  171. Nakatsugawa, T., Tolman, N. M., and Dahm, P. A., 1968, Degradation and activation of parathion analogs by microsomal enzymes, Biochem. Pharmacol. 17:1517.PubMedGoogle Scholar
  172. Nakatsugawa, T., Tolman, N. M., and Dahm, P. A., 1969a, Degradation of parathion in the rat, Biochem. Pharmacol. 18:1103.PubMedGoogle Scholar
  173. Nakatsugawa, T., Tolman, N. M., and Dahm, P. A., 1969b, Metabolism of S35-parathion in the house fly, J. Econ. Entomol. 62:408.PubMedGoogle Scholar
  174. Nakatsugawa, T., Tolman, N. M., and Dahm, P. A., 1969c, Oxidative degradation of diazinon by rat liver microsomes, Biochem. Pharmacol. 18:685.PubMedGoogle Scholar
  175. Neal, R. A., 1967a, Studies on the metabolism of diethyl 4-nitrophenyl phosphorothionate (parathion) in vitro, Biochem. J. 103:183.PubMedGoogle Scholar
  176. Neal, R. A., 1967b, Studies of the enzymic mechanism of the metabolism of diethyl 4-nitrophenyl phosphorothionate (parathion) by rat liver microsomes, Biochem. J. 105:289.PubMedGoogle Scholar
  177. Neal, R. A., 1972, A comparison of the in vitro metabolism of parathion in the lung and liver of the rabbit, Toxicol. Appl. Pharmacol. 23:123.PubMedGoogle Scholar
  178. Nebert, D. W., Considine, N., and Kon, H., 1973, Genetic differences in cytochrome P-450 during induction of mono-oxygenase activities, Drug Metab. Dispos. 1:231.PubMedGoogle Scholar
  179. Nelson, P. A., 1974, Aldrin epoxidation in Lumbricus terrestris L., M.S. thesis, SUNY College of Environmental Science and Forestry.Google Scholar
  180. Nishibayashi, H., and Sato, R., 1968, Preparation of hepatic microsomal particles containing P-450 as sole heme constituent and absolute spectra of P-450, J. Biochem. (Tokyo) 63:766.Google Scholar
  181. Nishibayashi, H., Omura, T., Sato, R., and Estabrook, R. W., 1967, Comments on the absorption spectra of hemoprotein P-450, in: Structure and Function of Cytochromes (K. Okunuki, M. D. Kamen, and I. Sukuzu, eds.), pp. 658–665, University Park Press, Baltimore.Google Scholar
  182. O’Brien, R. D., 1960, Toxic Phosphorus Esters, Chemistry, Metabolism, and Biological Effects, Academic Press, New York.Google Scholar
  183. O’Brien, R. D., Kimmel, E. C., and Sferra, P. R., 1965, Toxicity and metabolism of famphur in insects and mice, J. Agr. Food Chem. 13:366.Google Scholar
  184. Oesch, F., Jerina, D. M., Daly, J. W., Lu, A. Y. H., Kuntzman, R., and Conney, A. H., 1972, A reconstituted microsomal enzyme system that converts naphthalene to trans-1,2-dihydroxy-1,2-dihydronaphthalene via naphthalene-1,2-oxide: Presence of epoxide hydrase in cytochrome P-450 and P-448 fractions, Arch. Biochem. Biophys. 153:62.PubMedGoogle Scholar
  185. Omura, T., and Sato, R., 1964, The carbon monoxide-binding pigment of liver microsomes, J. Biol. Chem. 239:2370.PubMedGoogle Scholar
  186. Omura, T., Sato, R., Cooper, D. Y., Rosenthal, O., and Estabrook, R. W., 1965, Function of cytochrome P-450 of microsomes, Fed. Proc. 24:1181.PubMedGoogle Scholar
  187. Omura, T., Siekevitz, P., and Palade, G. E., 1967, Turnover of constituents of the endoplasmic reticulum membranes of rat hepatocytes, J. Biol. Chem. 242:2389.PubMedGoogle Scholar
  188. Oonnithan, E. S., and Casida, J. E., 1968, Oxidation of methyl-and dimethylcarbamate insecticide chemicals by microsomal enzymes and anticholinesterase activity of the metabolites, J. Agr. Food Chem. 16:28.Google Scholar
  189. Oppenoorth, F. J., 1971, Resistance in insects: The role of metabolism and the possible use of synergists, Bull. WHO 44:195.PubMedGoogle Scholar
  190. Orrenius, S., Ellin, υ., Jakobsson, S. V., Thor, H., Cinti, D. L., Schenkman, J. B., and Estabrook, R. W., 1973, The cytochrome P-450-containing mono-oxygenase system of rat kidney cortex microsomes, Drug Metab. Dispos. 1:350.PubMedGoogle Scholar
  191. Palade, G. E., and Siekevitz, P., 1956, Liver microsomes, an integrated morphological and biochemical study, J. Biophys. Biochem. Cytol. 2:171.PubMedGoogle Scholar
  192. Papadopoulos, N. M., and Kintzios, J. A., 1963, Formation of metabolites from nicotine by a rabbit liver preparation, J. Pharmacol Exp. Ther. 140:269.PubMedGoogle Scholar
  193. Parke, D. V., 1968, The Biochemistry of Foreign Compounds, Pergamon Press, New York.Google Scholar
  194. Perry, A. S., and Buckner, A. J., 1970, Studies on microsomal cytochrome P-450 in resistant and susceptible houseflies, Life Sci. (Part II) 9:335.Google Scholar
  195. Perry, A. S., Dale, W. E., and Buckner, A. J., 1971, Induction and repression of microsomal mixed-function oxidases and cytochrome P-450 in resistant and susceptible houseflies, Pestic. Biochem. Physiol. 1:131.Google Scholar
  196. Philpot, R. M., and Hodgson, E., 1971, Differences in the cytochrome P-450s from resistant and susceptible house flies, Chem.-Biol. Interact. 4:399.Google Scholar
  197. Poore, R. E., and Neal, R. A., 1972, Evidence for extrahepatic metabolism of parathion, Toxicol. Appl. Pharmacol. 23:759.PubMedGoogle Scholar
  198. Porter, K. R., 1961, The endoplasmic reticulum: Some current interpretations of its forms and functions, in: Biological Structure and Function, Vol. 1 (T. W. Goodwin, and O. Lindberg, eds.), pp. 127–155, Academic Press, New York.Google Scholar
  199. Ptashne, K. A., and Neal, R. A., 1972, Reaction of parathion and malathion with peroxytrifluoroacetic acid, a model system for the mixed function oxidases, Biochemistry 11:3224.PubMedGoogle Scholar
  200. Ptashne, K. A., Wolcott, R. M., and Neal, R. A., 1971, Oxygen-18 studies on the chemical mechanisms of the mixed function oxidase catalyzed desulfuration and dearylation reactions of parathion, J. Pharmacol. Exp. Ther. 179:380.PubMedGoogle Scholar
  201. Radzialowski, F. M., and Bousquet, W. F., 1967, Circadian rhythm in hepatic drug metabolizing activity in the rat, Life Sci. 6:2545.PubMedGoogle Scholar
  202. Remmer, H., 1971, Enzyme induction phenomenon: Effects of vertebrate livers, in: Pesticide Chemistry Vol. II (A. S. Tahori, ed.), pp. 167–196, Gordon and Breach, New York.Google Scholar
  203. Remmer, H., Estabrook, R. W., Schenkman, J., and Greim, H., 1968, Induction of microsomal liver enzymes, in: Enzymatic Oxidations of Toxicants (E. Hodgson, ed.), pp. 65–88, North Carolina State University Press, Raleigh, N.C.Google Scholar
  204. Renson, J., Weissbach, H., and Udenfriend, S., 1965, On the mechanism of oxidative cleavage of aryl-alkyl ethers by liver microsomes, Mol. Pharmacol. 1:145.PubMedGoogle Scholar
  205. Richardson, A., Baldwin, M., and Robinson, J., 1968, Identification of metabolites of dieldrin (HEOD) in the faeces and urine of rats, J. Sci. Food Agr. 19:524.Google Scholar
  206. Sasame, H. A., Mitchell, J. R., Thorgeirsson, S., and Gillette, J. R., 1973, Relationship between NADH and NADPH oxidation during drug metabolism, Drug. Metab. Dispos. 1:150.PubMedGoogle Scholar
  207. Sato, R., Nishibayashi, H., and Ito, A., 1969, Characterization of two hemoproteins of liver microsomes, in: Microsomes and Drug Oxidations (J. R. Gillette, A. H. Conney, G. J. Cosmides, R. W. Estabrook, J. R. Fouts, and G. J. Mannering, eds.), pp. 111–132, Academic Press, New York.Google Scholar
  208. Sato, R., Satake, H., and Imai, Y., 1973, Partial purification and some spectral properties of hepatic microsomal cytochrome P-450, Drug Metab. Dispos. 1:6.PubMedGoogle Scholar
  209. Schonbrod, R. D., and Terriere, L. C., 1971, Inhibition of housefly microsomal epoxidase by the eye pigment, xanthommatin, Pestic. Biochem. Physiol. 1:409.Google Scholar
  210. Sen Gupta, A. K., and Knowles, C. O., 1970, Galecron-14C (N’-(4-chloro-o-tolyl)N, N-dimethylformamidine) metabolism in the dog and goat, J. Econ. Entomol. 63:951.Google Scholar
  211. Shrivastava, S. P., Tsukamoto, M., and Casida, J. E., 1969, Oxidative metabolism of C14-labeled Baygon by living house flies and by house fly enzyme preparations, J. Econ. Entomol. 62:483.Google Scholar
  212. Siekevitz, P., 1965, Origin and functional nature of microsomes, Fed. Proc. 24:1153.PubMedGoogle Scholar
  213. Stripp, B., Zampaglione, N., Hamrick, M., and Gillette, J. R., 1972, An approach measurement of the stoichiometric relationship between hepatic microsomal drug metabolism and the oxidation of reduced nicotinamide adenine dinucleotide phosphate, Mol. Pharmacol. 8:189.PubMedGoogle Scholar
  214. Strother, A., 1972, In vitro metabolism of methylcarbamate insecticides by human and rat liver fractions, Toxicol. Appl. Pharmacol. 21:112.PubMedGoogle Scholar
  215. Sun, Y.-P., and Johnson, E. R., 1960, Synergistic and antagonistic actions of insecticide-synergist combinations and their mode of action, J. Agr. Food Chem. 8:261.Google Scholar
  216. Taylor, J. M., Dehlinger, P. J., Dice, J.F., and Schimke, R.T., 1973, The synthesis and degradation of membrane proteins, Drug Metab. Dispos. 1:84.PubMedGoogle Scholar
  217. Triolo, A. J., and Coon, J. M., 1966, Toxicologic interactions of chlorinated hydrocarbon and organophosphate insecticides, J. Agr. Food Chem. 14:549.Google Scholar
  218. Tsukamoto, M., 1959, Metabolic fate of DDT in Drosophila melanogaster. I. Identification of a non-DDE metabolite, Botyu-Kagaku 24:141.Google Scholar
  219. Ullrich, V., and Diehl, H., 1971, Uncoupling of monooxygenation and electron transport by fluorocarbons in liver microsomes, Eur. J. Biochem. 20:509.PubMedGoogle Scholar
  220. Ullrich, V., Ruf, H. H., and Mimoun, H., 1972, Model systems for monooxygenases, in: Biological Hydroxylation Mechanisms (G. S. Boyd and R. M. S. Smellie, eds.), pp. 11–19, Academic Press, New York.Google Scholar
  221. Unai, T., Cheng, H. M., Yamamoto, I., and Casida, J. E., 1973, Chemical and biological O-demethylation of rotenone derivatives, Agr. Biol. Chem. 37:1937.Google Scholar
  222. Warburg, O., 1926, Über die Wirkung des Kohlenoxyds auf den Stoffwechsel der Hefe, Biochem. Z. 177:471.Google Scholar
  223. Wattenberg, L. W., and Leong, J. L., 1971, Tissue distribution studies of polycyclic hydrocarbon hydroxylase activity, in: Handbook of Experimental Pharmacology, Vol. XXVIII: Concepts in Biochemical Pharmacology, Part 2 (B. B. Brodie and J. R. Gillette, eds.), pp. 422–430, Springer, Berlin.Google Scholar
  224. Weisburger, J. H., and Weisburger, E. K., 1971, N-Oxidation enzymes, in: Handbook of Experimental Pharmacology, Vol. XXVIII: Concepts in Biochemical Pharmacology, Part 2 B. B. Brodie and J. R. Gillette, eds.), pp. 312–333, Springer, Berlin.Google Scholar
  225. Welling, W., deVries, A. W., and Voerman, S., 1974, Oxidative cleavage of a carboxyester bond as a mechanism of resistance to malaoxon in houseflies, Pestic. Biochem. Physiol. 4:31.Google Scholar
  226. Wilkinson, C. F., 1968, Detoxication of pesticides and the mechanism of synergism, in: Enzymatic Oxidations of Toxicants (E. Hodgson, ed.), pp. 113–142, North Carolina State University Press, Raleigh, N.C.Google Scholar
  227. Wilkinson, C. F., and Brausten, L. B., 1972, Microsomal drug metabolizing enzymes in insects, Drub Metab. Rev. 1:153.Google Scholar
  228. Wilkinson, C. F., and Hicks, L. J., 1969, Microsomal metabolism of the 1,3-benzodioxole ring and its possible significance in synergistic action, J. Agr. Food Chem. 17:829.Google Scholar
  229. Willi, P., and Bickel, M. H., 1973, Liver metabolic reactions: Tertiary amine N-dealkylation, tertiary amine N-oxidation, N-oxide reduction, and N-oxide N-dealkylation. II. N, N-Dimethylaniline, Arch. Biochem. Biophys. 156:772.PubMedGoogle Scholar
  230. Williams, R. T., 1967, Comparative patterns of drug metabolism, Fed. Proc. 26:1029.PubMedGoogle Scholar
  231. Wilson, T. G., and Hodgson, E., 1972, Mechanism of microsomal mixed-function oxidase inhibitor from the housefly, Musca domestica L., Pestic. Biochem. Physiol. 2:64.Google Scholar
  232. Wolcott, R. M., and Neal, R. A., 1972, Effect of structure on the rate of the mixed function oxidase catalyzed metabolism of a series of parathion analogs, Toxicol. Appl. Pharmacol. 22:676.PubMedGoogle Scholar
  233. Wolcott, R. M., Vaughan, W. K., and Neal, R. A., 1972, Comparison of the mixed function oxidase-catalyzed metabolism of a series of dialkyl p-nitrophenyl phosphorothionates, Toxicol. Appl. Pharmacol. 22:213.PubMedGoogle Scholar
  234. Wong, D. T., and Terriere, L. C., 1965, Epoxidation of aldrin, isodrin, and heptachlor by rat liver microsomes, Biochem. Pharmacol. 14:375.PubMedGoogle Scholar
  235. Wustner, D. A., Desmarchelier, J., and Fukuto, T. R., 1972, Structure for the oxygenated product of peracid oxidation of Dyfonate® insecticide (O-ethyl S-phenyl ethylphosphonodithioate), Life Sci. (Part II) 11:583.Google Scholar
  236. Yamamoto, I., Kimmel, E. C., and Casida, J. E., 1969, Oxidative metabolism of pyrethroids in houseflies, J. Agr. Food Chem. 17:1227.Google Scholar
  237. Yang, R. S. H., Hodgson, E., and Dauterman, W. C., 1971a, Metabolism in vitro of diazinon and diazoxon in rat liver, J. Agr. Food Chem. 19:10.Google Scholar
  238. Yang, R. S. H., Hodgson, E., and Dauterman, W. C., 1971b, Metabolism in vitro of diazinon and diazoxon in susceptible and resistant houseflies, J. Agr. Food Chem. 19:14.Google Scholar
  239. Yu, S. J., and Terriere, L. C., 1971, Hormonal modification of microsomal oxidase activity in the housefly, Life Sci. 10:1173.Google Scholar
  240. Ziegler, D. M., McKee, E. M., and Poulsen, L. L., 1973, Microsomal flavoprotein-catalyzed N-oxidation of arylamines, Drug Metab. Dispos. 1:314.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Tsutomu Nakatsugawa
    • 1
  • Michael A. Morelli
    • 1
  1. 1.Department of EntomologyState University of New York, College of Environmental Science and ForestrySyracuseUSA

Personalised recommendations