Skip to main content

Insecticides as Inhibitors of Respiration

  • Chapter

Abstract

Under aerobic conditions, the energy required by the tissue cell is provided mainly by respiration, which refers to oxidation of the biological fuel molecules by molecular oxygen. The many chemical steps involved in respiration and in the subsequent conservation of the derived energy in the form of ATP are catalyzed by numerous species of enzymes. These do not occur in soluble form in the cytoplasm of the cell but are located exclusively in the mitochondria, which are considered to be the energy-generating sites of the cell.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abo-Khatwa, N., and Hollingworth, R. M., 1972, Chlorodimeform: The relation of mitochondrial uncoupling to toxicity in the German cockroach, Life Sci. (Part II) 11:1181.

    CAS  Google Scholar 

  • Aldridge, W. N., and Street, R. W., 1970, Oxidative phosphorylation: The specific binding of trimethyltin and triethyltin to rat liver mitochondria, Biochem. J. 118:171.

    PubMed  CAS  Google Scholar 

  • Anderson, A. D., March, R. B., and Metcalf, R. L., 1954, Inhibition of the succinoxidase system of susceptible and resistant houseflies by DDT and related compounds, Ann. Entomol. Soc. Am. 47:595.

    CAS  Google Scholar 

  • Avi-Dor-Dor, Y., and Gonda, O., 1959, Studies on the adenosine triphosphate-phosphate exchange and the hydrolysis of adenosine triphosphate catalyzed by a particulate fraction from the mosquito, Biochem J. 72:8.

    Google Scholar 

  • Barsa, M. C., and Ludwig, D., 1959, Effects of DDT on the respiratory enzymes of the mealworm, Tenebrio molitor (L.), and of the housefly, Musca domestica (L.), Ann. Entomol. Soc. Am. 52:179.

    CAS  Google Scholar 

  • Birt, L. M., 1961, Flight-muscle mitochondria of Lucilia cuprina and Musca domestica: Estimation of the pyridine nucleotide content and of the response of respiration to adenosine diphosphate, Biochem. J. 80:623.

    PubMed  CAS  Google Scholar 

  • Bode, C., and Klingenberg, M., 1964, Carnitine and fatty acid oxidation in mitochondria of various organs, Biochim. Biophys. Acta 84:93.

    PubMed  CAS  Google Scholar 

  • Brosemer, R. W., and Marquardt, R. R., 1966, Insect extramitochondrial glycerophosphate dehydrogenase. II. Enzymic properties and amino acid composition of the enzyme from honey bee (Apis mellifera) thoraces, Biochim Biophys. Acta 128:464.

    Google Scholar 

  • Brown, R. E., and Brown, A. W. A., 1956, The effects of insecticidal poisoning on the level of cytochrome oxidase in the American cockroach, J. Econ. Entomol. 49:675.

    CAS  Google Scholar 

  • Bruce, A. L., and Banks, W. M., 1973, Metabolism of muscle of cockroach Blaberus gigantens, Ann. Entomol. Soc. Am. 66:1209.

    Google Scholar 

  • Bulos, B., Shukla, S., and Sacktor, B., 1972, Bioenergetic properties of mitochondria from flight muscle of aging blow flies, Arch. Biochem. Biophys. 149:461.

    PubMed  CAS  Google Scholar 

  • Burgos, J., and Redfearn, E. R., 1965, The inhibition of mitochondrial reduced nicotinamideadenine dinucleotide oxidation by rotenoids, Biochim. Biophys. Acta 110:475.

    Google Scholar 

  • Casida, J. E., 1973, Insecticide biochemistry, Ann. Rev. Biochem. 42:259.

    PubMed  CAS  Google Scholar 

  • Chan, S. K., and Margoliash, E., 1966, Properties and primary structure of the cytochrome c from the flight muscles of the moth, Samia cynthia, J. Biol. Chem. 241:335.

    CAS  Google Scholar 

  • Chance, B., and Hess, B., 1959, Metabolic control mechanisms. I. Electron transfer in the mammalian cell, J. Biol. Chem. 234:2402.

    Google Scholar 

  • Chance, B., and Sacktor, B., 1958, Respiratory metabolism of insect flight muscle. II. Kinetics of respiratory enzymes in flight muscle sarcosomes, Arch. Biochem. Biophys. 76:509.

    PubMed  CAS  Google Scholar 

  • Chance, B., and Williams, G. R., 1955a, Respiratory enzymes in oxidative phosphorylation. III. The steady state, J. Biol Chem. 217:409.

    PubMed  CAS  Google Scholar 

  • Chance, B., and Williams, G. R., 1955b, Respiratory chain and oxidative phosphorylation. IV. The respiratory chain, J. Biol. Chem. 217:429.

    PubMed  CAS  Google Scholar 

  • Chance, B., and Williams, G. R., 1956, The respiratory chain and oxidative phosphorylation, Advan. Enzymol. 17:65.

    CAS  Google Scholar 

  • Chefurka, W., 1958, On the importance of α-glycerophosphate dehydrogenase in glycolyzing insect muscle, Biochim. Biophys. Acta 28:660.

    PubMed  CAS  Google Scholar 

  • Chefurka, W., 1965, Some comparative aspects of the metabolism of carbohydrate in insect, Ann. Rev. Entomol. 10:345.

    CAS  Google Scholar 

  • Childress, C. C., and Sacktor, B., 1966, Pyruvate oxidation and the permeability of mitochondria from blowfly flight muscle, Science 154:268.

    PubMed  CAS  Google Scholar 

  • Chino, H., 1963, Respiratory enzyme system of the Bombyx silkworm egg in relation to the mechanism of the formation of sugar alchols, Arch. Biochem. Biophys. 102:400.

    PubMed  CAS  Google Scholar 

  • Chino, H., and Harano, T., 1966, The significance of 3-hydroxykynurenine for the NADH, NADPH-cytochrome c reductase which exists in soluble fraction, Seikagaku 38:675.

    Google Scholar 

  • Cochran, D. G., 1963, Respiratory control in cockroach-muscle mitochondria, Biochim. Biophys. Acta 78:393.

    PubMed  CAS  Google Scholar 

  • Conover, T. E., and Ernster, L., 1960, By-pass of the amytal-sensitive site of the respiratory chain in mitochondria by means of vitamin K3, Acta Chem. Scand. 14:1840.

    Google Scholar 

  • Conover, T. E., and Ernster, L., 1962, DT diaphorase. II. Relation to respiratory chain of intact mitochondria, Biochim. Biophys. Acta 58:189.

    PubMed  CAS  Google Scholar 

  • Conover, T. E., and Ernster, L., 1963, DT diaphorase. IV. Coupling of extramitochondrial reduced pyridine nucleotide oxidation to mitochondrial respiratory chain, Biochim. Biophys. Acta 67:268.

    PubMed  CAS  Google Scholar 

  • Conover, T. E., Danielson, L., and Ernster, L., 1963, DT diaphorase. III. Separation of mitochondrial DT diaphorase and respiratory chain, Biochim. Biophys. Acta 67:254.

    PubMed  CAS  Google Scholar 

  • Corbett, J. R., and Wright, B. J., 1970, Uncoupling of oxidative phorphorylation in intact mites and in isolated mite mitochondria by a new acaricide, 5,6-dichloro-l-phenyoxycarbonyl-2-trifluromethylbenzimidazole, Biochem. J. 118:50.

    Google Scholar 

  • Davis, R. A., and Fraenkel, G., 1940, The oxygen consumption of flies during flight, J. Exp. Biol. 17:402.

    CAS  Google Scholar 

  • De Kort, C. A. D., Bartelink, A. K. M., and Schuurmans, R. R., 1973, The significance of l-proline for oxidative metabolism in the flight muscles of the Colorado beetle, Leptinotarsa decemlineata, Insect Biochem. 3:11.

    Google Scholar 

  • Dixon, M., and Webb, E. C., 1964, Enzymes, Longmans Green, London.

    Google Scholar 

  • Donnellan, J. F., and Beechey, R. B., 1969, Factors, affecting the oxidation of glycerol-1-phosphate by insect flight muscle mitochondria, J. Insect Physiol. 15:367.

    PubMed  CAS  Google Scholar 

  • Donnellan, J. F., Barker, M. D., Wood, J., and Beechey, R. B., 1970, Specificity and locale of the L-3-glycerophosphate-flavoprotein oxidoreductase mitochondria isolated from the flight muscle of Sacophaga barbata, Biochem. J. 120:467.

    PubMed  CAS  Google Scholar 

  • Dummel, R. J., and Kun, E., 1969, Studies with specific enzyme inhibitors. XII. Resolution of dl-erythro-fluorocitric acid into optically active isomers, J. Biol. Chem. 244:2966.

    PubMed  CAS  Google Scholar 

  • Eanes, R. Z., Skilleter, D. N., and Kun, E., 1972, Inactivation of the tricarboxylate carrier of liver mitochondria by (-)-erythrofluorocitrate, Biochem. Biophys. Res. Commun. 46:1618.

    PubMed  CAS  Google Scholar 

  • Ela, R., Chefurka, W., and Robinson, J. B., In vivo glucose metabolism in the normal and poisoned cockroach, Periplaneta americana, J. Insect Physiol. 16:2137.

    Google Scholar 

  • Ernster, L., and Navazio, F., 1958, Soluble diaphorase in animal tissues, Acta Chem. Scand. 12:595.

    CAS  Google Scholar 

  • Ernster, L., Ljunggren, M., and Danielson, L., 1960, Purification and some properties of a highly dicumarol-sensitive liver diaphorase, Biochem. Biophys. Res. Commun. 2:88.

    CAS  Google Scholar 

  • Ernster, L., Danielson, L., and Ljunggren, M., 1962, DA diaphorase. I. Purification from the soluble fraction of rat-liver cytoplasm, and properties, Biochim. Biophys. Acta 58:171.

    PubMed  CAS  Google Scholar 

  • Estabrook, R. W., 1967, Mitochondrial respiratory control and the polarographic measurement of ADP:O ratios, in: Methods in Enzymology, Vol. 10 (R. E. Estabrook, and M. F. Pullman, eds.), p. 41, Academic Press, New York.

    Google Scholar 

  • Estabrook, R. W., and Sacktor, B., 1958, α-Glycerophosphate oxidase of flight muscle mitochondria, J. Biol. Chem. 233:1014.

    PubMed  CAS  Google Scholar 

  • Fukami, J., 1954, Effect of rotenone on the succinoxidase system in the muscle of the cockroach, Jpn. J. Appl. Zool. 19:29.

    CAS  Google Scholar 

  • Fukami, J., 1955, Effect of rotenone on respiration in the muscle of the cockroach, Periplaneta americana L., Jpn. J. Appl. Zool. 19:148.

    Google Scholar 

  • Fukami, J., 1956, Effect of some insecticides on the respiration of insect organs, with special reference to the effects of rotenone, Botyukagaku 21:122.

    CAS  Google Scholar 

  • Fukami, J., 1957, Studies on red and white muscle of insect, Ins. Insect Contrib., Kyoto Univ. WHO, p. 217.

    Google Scholar 

  • Fukami, J., 1961, Effect of rotenone on the respiratory enzyme system of insect muscle, Bull. Natl. Inst.Agr. Sci. C 13:33.

    Google Scholar 

  • Fukami, J., and Nakatsugawa, T., 1961, Studies on red and white muscles of insects with special reference to spectrophotometric observation of cytochromes in muscles, Bull. Natl. Inst. Agr. Sci. C 13:47.

    Google Scholar 

  • Fukami, J., and Tomizawa, C., 1956, Effects of rotenone on the l-glutamic oxidase system in the insect, Botyu-Kagaku 21:129.

    CAS  Google Scholar 

  • Fukami, J., and Tomizawa, C., 1958, The effects of rotenone and its derivatives on the respiration of brain in guinea pig, Botyu-Kagaku 23:205.

    Google Scholar 

  • Fukami, J., Nakatsugawa, T., and Narahashi, T., 1959, The relation between chemical structure and toxicity in rotenone derivatives, Jpn. J. Appl. Entomol. Zool 3:259.

    Google Scholar 

  • Fukami, J., Shishido, T., Fukunaga, K., and Casida, J. E., 1969, Oxidative metabolism of rotenone in mammals, fish and insects and its relation to selective toxicity, J. Agr. Food. Chem. 17:1217.

    CAS  Google Scholar 

  • Fukami, J., Mitsui, T., Fukunaga, and Shishido, T., 1970, The selective toxicity of rotenone between mammals, fish and insects, in: Biochemical Toxicology of Insecticides (R. D. O’Brien and I. Yamamoto, eds.), pp. 159–178, Academic Press, New York.

    Google Scholar 

  • Gonda, O., Traub, A., and Avi-Dor, Y., 1957, The oxidative activity of a particulate fraction from mosquitos, Biochem. J. 67:487.

    PubMed  CAS  Google Scholar 

  • Gregg, C. T., Heisler, C. R., and Remmert, L. F., 1960, Oxidative phosphorylation and respiratory control in housefly mitochondria, Biochim. Biophys. Acta 45:561.

    PubMed  CAS  Google Scholar 

  • Gutman, M., Singer, T. P., Beinert, H., and Casida, J. E., 1970, Reaction sites of rotenone, piericidin A, and amytal in relation to the nonhem ion components of NADH dehydrogenase, Proc. Natl. Acad. Sci. U.S.A. 65:763.

    PubMed  CAS  Google Scholar 

  • Gutman Coles, C. J., Singer, T. P., and Casida, J. E., 1971, On the functional organization of the respiratory chain at the dehydrogenase-coenzyme Q junction, Biochemistry 10 (11):2036.

    Google Scholar 

  • Hagihara, B., 1965, Measurement of respiration with polarography, Protein Nucleic Acid Enzyme 10:1689.

    CAS  Google Scholar 

  • Hagihara, B., 1974, The outline of mitochomdria, in: Mitochondria (B. Hagihara, ed.), pp. 1–104, Asakura Shoten, Tokyo.

    Google Scholar 

  • Hagihara, B., and Lardy, H. A., 1960, A method for the separation of orthophosphate from other phosphate compounds, J. Biol. Chem. 235:889.

    PubMed  CAS  Google Scholar 

  • Hall, C., Wu, M., Crane, F. L., Takahashi, N., Tamura, S., and Folkers, K., 1966, Piericidin A: A new inhibitor of mitochondrial electron transport, Biochem. Biophys. Res. Commun. 25:373.

    PubMed  CAS  Google Scholar 

  • Hansford, R. G., 1971, Some properties of mitochondria isolated from the flight muscle of periodical cicada, Magicicada septendecim, Biochem. J. 121:771. Hansford, R. G., and Chappell, J. B., 1967, The effect of Ca2+ on the oxidation of glycerol phosphate by blowfly mitochondria, Biochem. Biophys. Res. Commun. 27:686.

    Google Scholar 

  • Hansford, R. G., and Sacktor, B., 1970, The control of the oxidation of proline by isolated flight muscle mitochondria, J. Biol. Chem. 245:991.

    PubMed  CAS  Google Scholar 

  • Harano, T., and Chino, H., 1971, A new diaphorase from Bombyx silkworm eggs—Cytochrome c reductase activity mediated with xanthommatin, Arch. Biochem. Biochem. Biophys. 146:467.

    CAS  Google Scholar 

  • Harvey, W. R., and Haskeil, J. A., 1966, Metabolic control mechanisms in insect, Advan. Insect Physiol. 3:133.

    CAS  Google Scholar 

  • Hollunger, G., 1955, Guanidines and oxidative phosphorylations, Acta pharmacol. Toxicol. 11: Suppl. No. 1,84 pp.

    Google Scholar 

  • Horgan, D. J., Singer, T. P., and Casida, J. E., 1968a, Studies on the respiratory chain-linked reduced nicotine-amide adenine dinucleotide dehydrogenase. XII. Binding sites of rotenone, piericidin A, and amytal in the respiratory chain, J. Biol. Chem. 243:834.

    PubMed  CAS  Google Scholar 

  • Horgan, D. J., Ohno, H., Singer, T. P., and Casida, J. E., 1968b, Studies on the respiratory chain-linked reduced nicotine-amide adenine dinucleotide dehydrogenase. IV. Interactions of piericidin with the mitochondrial respiratory chain, J. Biol. Chem. 243:5967.

    PubMed  CAS  Google Scholar 

  • Hosotsuji, T., 1956, Japanese Patent S 36-147.

    Google Scholar 

  • Hülsmann, W. C., Elliott, W. B., and Slater, E. C., 1960, The nature and mechanism of action uncoupling agents present in mitochrome preparations, Biochim. Biophys. Acta 39:267.

    PubMed  Google Scholar 

  • Ilivicky, J., and Casida, J. E., 1969, Uncoupling action of 2,4-dinitrophenols, 2-trifluoromethylbenzimidazoles and certain other pesticide chemicals upon mitochondria from different sources and its relation to toxicity, Biochem. Pharmacol. 18:1389.

    PubMed  CAS  Google Scholar 

  • Ilivicky, J., Chefurka, W., and Casida, J. E., 1967, Oxidative phosphorylation and sensitivity to uncouplers of housefly mitochondria: Influence of isolation medium, J. Econ. Entomol. 60:1404.

    PubMed  CAS  Google Scholar 

  • Jeng, M., Hals, C., Crane, F. L., Takahashi, S., Tamura, S., and Folkers, K., 1968, Inhibition of mitochondrial electron transport by piericidin A and related compounds, Biochemistry 7:1311.

    PubMed  CAS  Google Scholar 

  • Kallapur, V. L., and George, C. J., 1973, Fatty acid oxidation by the flight muscle of the dragonfly, Pantala flavescens, J. Insect Physiol. 19:1035.

    CAS  Google Scholar 

  • Keilin, D., and King, T. E., 1960, Effect of inhibitors on the activity of soluble succinic dehydrogenase and on the reconstitution of the succinic dehydrogenase cytochrome system from its components, Proc. Roy. Soc. 152B:163.

    Google Scholar 

  • Klingenberg, M., and Bücher, T., 1959, Flugmuskelmitochondrien aus Locusta migratoria mit Atmungskontrolle, Biochem. Z. 331:312.

    CAS  Google Scholar 

  • Klingenberg, M., Slenczka, W., and Ritt, E., 1959, Vergleichende Biochemie der Pyridinucleotid-System in Mitochondria Verschiedener Organe, Biochem. Z. 332:47.

    PubMed  CAS  Google Scholar 

  • Kröger, A., and Klingenberg, M., 1966, On the role of ubiquinone in mitochondria. II. Redox reaction of ubiquinone under the control of oxidative phosphorylation, Biochem. Z. 344:317. Kubišta, V., 1957, Inorganic phosphate and the rate of glycolysis in insect muscle, Nature (London) 180:549.

    Google Scholar 

  • Kubišta, V., 1958, Anaerobic Glykolyse in den Insectenmuskeln, Biochem. Z. 330:315.

    PubMed  Google Scholar 

  • Kurland, C. G., and Schneiderman, H. A., 1959, The respiratory enzymes or diapausing silkworm pupae: A new interpretation of carbon monoxide-insensitive respiration, Biol. Bull. 116:136.

    CAS  Google Scholar 

  • Lardy, H., and Ferguson, S. M., 1969, Oxidative phosphorylation in mitochondria, Ann. Rev. Biochem. 38:991.

    PubMed  CAS  Google Scholar 

  • Lardy, H. A., and Wellman, H., 1952, Oxidative phosphorylation: Role of inorganic phosphate and acceptor systems in control of metabolic rates, J. Biol. Chem. 195:215.

    PubMed  CAS  Google Scholar 

  • Lardy, H. A., Johnson, D., and McMurray, W. C., 1958, Antibiotics as tools for metabolic studies. I. Survey of toxic antibiotics in respiratory, Phosphorylative and glycolytic systems, Arch. Biochem. Biophys. 78:587.

    PubMed  CAS  Google Scholar 

  • Lehninger, A. L., 1970, Biochemistry, Worth Publishers, New York.

    Google Scholar 

  • Lehninger, A. L., and Remmert, L. F., 1959, An endogenous uncoupling and swelling agent in liver mitochondria and its enzymic formation, J. Biol. Chem. 234:2459.

    PubMed  CAS  Google Scholar 

  • Lester, R. L., and Crane, F. L., 1959, The natural occurrence of coensyme Q and related compounds, J. Biol. Chem. 234:2169.

    PubMed  CAS  Google Scholar 

  • Lewis, S. E., and Slater, E. C., 1954, Oxidative phosphorylation in insect sarcomes, Biochem. J. 58:207.

    PubMed  CAS  Google Scholar 

  • Lilian, M. E., and Ilse, D., 1970, An inhibitor of mitochondrial respiration in venom of the australian bull dog ant, Myrecia gulosa, J. Insect Physiol. 16:1531.

    Google Scholar 

  • Lindahl, P. E., and Öberg, K. E., 1961, The effect of rotenone on respiration and its point of attack, Exp. Cell. Res. 23:228.

    PubMed  CAS  Google Scholar 

  • Marquardt, R. R., and Brosemer, R. W., 1966, Insect extramitochondrial glycerophosphate dehydrogenase. I. Crystallization and physical properties of the enzyme from honeybee (Apis mellifera) thoraces, Biochim. Biophys. Acta 128:454.

    Google Scholar 

  • Martius, C., and Märki, F., 1957, Ueber, Phyllochinon-Reductase, Biochem. Z. 329:450.

    CAS  Google Scholar 

  • Matsuda, M., and Fukami, J., 1972, Preliminary survey of effects of phenols on the oxidative phosphorylation in the American cockroach muscle mitochondria, Appl. Entomol. Zool. 7:27.

    CAS  Google Scholar 

  • McAllen, J. W., and Brown, A. W. A., 1960, The effect of insecticides on transamination in the American cockroach, J. Econ. Entomol. 53:166.

    Google Scholar 

  • Mitsui, T., Fukami, J., Fukunaga, K., Sagawa, T., Takahashi, N., and Tamure, S., 1969, Studies on piericidin. I. Effect of piericidin A and B on mitochondrial electron transport in insect, Botyu-Kagaku 34:126.

    CAS  Google Scholar 

  • Mitsui, T., Fukami, J., Fukunaga, K., Takahashi, N., and Tamura, S., 1970, Studies on piericidin: Antagonistic effect of vitamin K3 on the respiratory chain of insects and mammals in the presence of piericidin A, Agr. Biol. Chem. 34:1101.

    CAS  Google Scholar 

  • Muraoka, S., and Terada, H., 1972, 3,5-Di-terf-butyl-4-hydroxybenzylidene-malononitrile: New powerful uncoupler of respiratory-chain phosphorylation, Biochim. Biophys. Acta 275:271.

    PubMed  CAS  Google Scholar 

  • O’Brien, R. D., 1956, The inhibition of cholinesterase and succinoxidase by malathion and its isomer, J. Econ. Entomol. 49:484.

    Google Scholar 

  • O’Brien, R. D., 1957, The effect of malathion and its isomer on carbohydrate metabolism of the mouse, cockroach and housefly, J. Econ. Entomol. 50:79.

    Google Scholar 

  • O’Brien, R. D., 1967, Insecticides: Action and Metabolism, Academic Press, New York.

    Google Scholar 

  • Obrien, R. D., Cheng, L., and Kimmel, E. C., 1965, Inhibition of the α-glycerophosphate shuttle in housefly flight muscle, J. Insect Physiol. 11:1241.

    CAS  Google Scholar 

  • Ohkawa, H., Ohkawa, R., Yamamoto, I., and Casida, J. E., 1972, Enzyme mechanisms and toxicological significance of hydrogen cyanide liberation from various organothiocyanates and organonitriles in mice and houseflies, Pestic. Biochem. Physiol. 2:95.

    CAS  Google Scholar 

  • Ohnishi, K., 1966, Studies on cytochrome b. III. Comparison of cytochrome B’s from beef heart muscle and larvae of the housefly, J. Biochem. 59:17.

    PubMed  CAS  Google Scholar 

  • Okada, Y., 1973, The Studies of Cytochrome, pp. 165–176, University of Tokyo Press, Tokyo.

    Google Scholar 

  • Orser, W. B., and Brown, A. W. A., 1951, The effect of insecticides on the heart beat of Periplaneta, Can. J. Zool. 29:54.

    CAS  Google Scholar 

  • Osanai, M., 1966, The pigment of silkworm’s egg, Jpn. Zool. Mag. 71:381.

    Google Scholar 

  • Parker, V. H., 1958, Effect of nitrophenols and halogenophenols on the enzymic activity of rat-liver mitochondria, Biochem. J. 69:306.

    PubMed  CAS  Google Scholar 

  • Piper, G. R., and Casida, J. E., 1965, Housefly adenosine triphosphatases and their inhibition by insecticidal organotin compounds, J. Econ. Entomol. 58:392.

    Google Scholar 

  • Pressman, B. C., and Lardy, H. A., 1956, Effect of surface active agents on the latent ATPase of mitochondria, Biochim. Biophys. Acta 21:458.

    PubMed  CAS  Google Scholar 

  • Pullman, M. E., and Racker, E., 1956, Spectrophotometric studies of oxidative phosphorylation, Science 123:1105.

    PubMed  CAS  Google Scholar 

  • Quagliariello, E., Palmieri, F., Alifano, A., and Papa, S., 1966, 3-Hydroxyanthranilic acidmediated respiration in the inhibited respiratory chain, Biochim. Biophys. Acta 113:482.

    PubMed  CAS  Google Scholar 

  • Rees, K. B., 1954, Aerobic metabolism of the muscle of Locusta migratoria, Biochem. J. 58:196.

    PubMed  CAS  Google Scholar 

  • Remmert, L. F., and Lehninger, A. L., 1959, A mitochondrial factor producing “loose-coupling” of respiration, Proc. Natl. Acad. Sci. U.S.A. 45:1.

    PubMed  CAS  Google Scholar 

  • Rose, M. S., and Lock, E. A., 1970, The interaction of triethyltin with a component of guinea-pig liver supernatant: Evidence for histidine in the binding sites, Biochem. J. 120:151.

    PubMed  CAS  Google Scholar 

  • Sacklin, J. A., Terriere, L. C., and Remmert, L. F., 1955, Effect of DDT on enzymatic oxidation and phosphorylation, Science 122:377.

    PubMed  CAS  Google Scholar 

  • Sacktor, B., 1953, Investigations on the mitochondria of the housefly, Musca domestica L., J. Gen. Physiol. 36:371.

    PubMed  CAS  Google Scholar 

  • Sacktor, B., 1954, Investigations on the mitochondria of housefly, Musca domestica L. III. Requirements for oxidative phosphorylation. J. Gen. Physiol. 37:343.

    CAS  Google Scholar 

  • Sacktor, B., 1961, The role of mitochondria in respiratory metabolism of flight muscle, Ann. Rev. Entomol. 6:103.

    CAS  Google Scholar 

  • Sacktor, B., 1965, Energetics and metabolism of muscular contraction, in: Physiology of Insecta, Vol. II (M. Rockstein, ed.), pp. 484–580, Academic Press, New York.

    Google Scholar 

  • Sacktor, B., 1974, Biological oxidations and energetics in insect mitochondria, in: Physiology of Inseda, Vol. IV (M. Rockstein, ed.), pp. 271–353, Academic Press, New York.

    Google Scholar 

  • Sacktor, B., and Childress, C. C., 1967, Metabolism of proline in insect flight muscles and its significance in stimulating the oxidation of pyruvate, Arch. Biochem. Biophys. 120:583.

    CAS  Google Scholar 

  • Sacktor, B., and Cochran, D. G., 1958, The respiratory metabolism of insect flight muscle. I. Manometric studies of oxidation and concomitant phosphorylation with sarcosomes, Arch. Biochem. Biophys. 74:266.

    PubMed  CAS  Google Scholar 

  • Sacktor, B., and Wormser-Shavit, E., 1966, Regulation of metabolism in working muscle in vivo. I. Concentrations of some glycolytic, tricarboxylic acid cycle, and amino acid intermediates in insect flight muscle during flight, J. Biol. Chem. 241:624.

    PubMed  CAS  Google Scholar 

  • Sacktor, B., O’Neil, J. J., and Cochran, D. G., 1958, The requirement of serum albumin in oxidative phosphorylation of flight muscle mitochondria, J. Biol. Chem. 233:1233.

    PubMed  CAS  Google Scholar 

  • Slater, E. C., 1960, in: The Structure and Function of Muscle, Vol. 2 (G. Bourne, ed.), p. 105, Academic Press, New York.

    Google Scholar 

  • Takahashi, N., Suzuki, A., Kimura, Y., Miyamoto, S., Tamura, S., Mitsui, T., and Fukami, J., 1968, Isolation, structure and physiological activities of piericidin B: Natural insecticide produced by a streptomyces, Agr. Biol. Chem. 32:1115.

    CAS  Google Scholar 

  • Tamura, S., Takahashi, N., Miyamoto, S., Mori, R., Suzuki, S., and Nagatsu, J., 1963, Isolation and physiological activities of piericidin A, a natural insecticide produced by streptomyces, Agr. Biol. Chem. 27:576.

    CAS  Google Scholar 

  • Tischler, N., 1936, Studies on how derris kills insects, J. Econ. Entomol. 28:215.

    Google Scholar 

  • Tomizawa, C., and Fukami, J., 1956, Biochemical studies on the action of insecticides. II. The oxidative phosphorylation in the flight muscle of Locusta migratoria and the influences of insecticides, Oyo-Kontyu 12:1.

    CAS  Google Scholar 

  • Van den Bergh, S. G., 1964, Pyruvate oxidation and the permeability of housefly sarcosomes, Biochem. J. 93:128.

    PubMed  Google Scholar 

  • Van den Bergh, S. G., 1967, Insect mitochondria, in: Methods in Enzymology, Vol. 10 (R. E. Estabrook and M. F. Pullman, eds.), p. 117, Academic Press, New York.

    Google Scholar 

  • Van den Bergh, S. G., and Slater, E. C., 1960, The respiratory activity and respiratory control of sarcosomes isolated from the thoracic muscle of the housefly, Biochim. Biophys. Acta 40:176.

    PubMed  Google Scholar 

  • Van den Bergh, S. G., and Slater, E. C., 1962, The respiratory activity and permeability of housefly sarcosomes, Biochem. J. 82:362.

    PubMed  CAS  Google Scholar 

  • Weinbach, E. C., 1954, The effect of pentachlorophenol on oxidative phosphorylation, J. Biol. Chem. 210:545.

    PubMed  CAS  Google Scholar 

  • Weinbach, E. C., Sheffield, H., and Garbers, J., 1963, Restoration of oxidative and morphological integrity to swollen, and uncoupled rat mitochondria, Proc. Natl. Acad. Sci. U.S.A. 49:561.

    Google Scholar 

  • Weis-Fogh, T., 1964, Biology and physics of locust flight. VIII. Lift and metabolic rate of flying insects, J. Exp. Biol. 41:257.

    PubMed  CAS  Google Scholar 

  • Whitehouse, H. W., 1964, Biochem. Pharmocol. 13:319.

    CAS  Google Scholar 

  • Williamson, R. L., and Metcalf, R. L., 1967, Salicylanilides: A new group of active uncouplers of oxidative phosphorylation, Science 158:1694.

    PubMed  CAS  Google Scholar 

  • Winteringham, F. P. W., Hellyer, G. C., and McKay, M. A., 1960, Effects of the insecticides DDT and dieldrin on phosphorus metabolism of the adult housefly Musca domestica, Biochem. J. 76:543.

    PubMed  CAS  Google Scholar 

  • Wojtczak, L., and Wojtczak, A. B., 1959, The action of serum albumin on oxidative phosphorylation in insect mitochondria, Biochim. Biophys. Acta 31:297.

    PubMed  CAS  Google Scholar 

  • Yammasaki, T., and Narahashi, T., 1957, Effects of oxygen lack, metabolic inhibitors, and DDT on the resting potential of insect nerve. Studies on the mechanism of action of insecticides. XII, Botyu-Kagaku 22:259.

    Google Scholar 

  • Yust, H. R., and Shelden, F. F., 1952, A study of the physiology of resistance to hydrocyanic acid in the California red scale, Ann. Entomol. Soc. Am. 45:220.

    CAS  Google Scholar 

  • Zahavi, M., and Tahori, A. S., 1972, Activity of mitochondrial NAD-linked isocitric dehydrogen-ase in alatiform and apteriform larve of Myzus persicae, J. Insect Physiol. 18:608.

    Google Scholar 

  • Zebe, E. C., and McShan, W. H., 1957, Lactic and α-glycerophosphate dehydrogenase in insect, J. Gen. Physiol. 40:779.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fukami, Ji. (1976). Insecticides as Inhibitors of Respiration. In: Wilkinson, C.F. (eds) Insecticide Biochemistry and Physiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2212-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2212-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2214-4

  • Online ISBN: 978-1-4899-2212-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics