Skip to main content

The Application of Some Stochastic Processes to the Study of Plankton Patchiness

  • Chapter
Spatial Pattern in Plankton Communities

Part of the book series: NATO Conference Series ((MARS,volume 3))

Abstract

Since its first use by Platt (1972) spectral analysis has come to play a central role in the statistical analysis and understanding of plankton patchiness. For a number of reasons it has replaced earlier statistical models that were based on the distribution of counts/sample (Cassie, 1963). Firstly, the statistical distributions used to analyze the distribution of counts/sample (e. g. Neyman type A and Negative Binomial) assumed that the clusters or patches were small compared to the sample size (Skellam, 1958). When this is not true the estimated value of the distribution parameters and the goodness-of-fit will vary with quadrat size (Pielou, 1957). Secondly, the use of counts/sample data alone discards valuable information about the spatial covariance properties of the data being studied. Thirdly, it is fairly well accepted that the causes of patchiness are likely to be different at different space scales and this effect should be observable as a change in shape of the spectrum at different wavenumbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, Y. and D. M. Dubois, 1975: Space time simulations of a theoretical model of predator-prey equations. Unpublished manuscript.

    Google Scholar 

  • Bartlett, M. S., 1963: The spectral analysis of point processes. J. Roy. Statist. Soc., 25B, 264–296.

    Google Scholar 

  • Bartlett, M. S., 1966: An introduction to stochastic processes. Cambridge University Press, 362 pp.

    Google Scholar 

  • Bartlett, M. S., 1975: The statistical analysis of spatial pattern. Chapman and Hall, London, 90 pp.

    Google Scholar 

  • Boyd, C. M., 1973: Small scale spatial patterns of marine zooplankton examined by an electronic in situ Zooplankton detecting device. Neths. J. Sea Res., 7, 103–111.

    Article  Google Scholar 

  • Cassie, R. M., 1963: Microdistribution of plankton. Oceanogr. Mar. Biol., 1, 223–252.

    Google Scholar 

  • Denman, K. L., 1976: Covariability of chlorophyll and temperature in the sea. Deep-Sea Res., 23, 539–550.

    Google Scholar 

  • Denman, K. L. and T. Platt, 1975: Coherences in the horizontal distributions of phytoplankton and temperature in the upper ocean. Mem. Soc. Roy. Sci. Liege, 7, 19–30.

    Google Scholar 

  • Denman, K. L. and T. Platt, 1976: The variance spectrum of phytoplankton in a turbulent ocean. J. Mar. Res., 34, 593–601.

    Google Scholar 

  • Evans, G. T., J. H. Steele and G.E.B. Kullenberg, 1977: A preliminary model of shear diffusion and plankton populations. Scot. Fish. Res. Rept., 9, 20 pp.

    Google Scholar 

  • Fasham, M.J.R., 1978: The statistical and mathematical analysis of plankton patchiness. Oceanogr. Mar. Biol., 16, 43–79.

    Google Scholar 

  • Fasham, M.J.R., M. V. Angel and H.S.J. Roe, 1974: An investigation of the spatial pattern of Zooplankton using the Hardy-Longhurst plankton recorder. J. Exp. Mar. Biol. Ecol., 16, 93–112.

    Article  Google Scholar 

  • Fasham, M.J.R. and P. R. Pugh, 1976: Observations on the horizontal coherence of chlorophyll a and temperature. Deep-Sea Res., 23, 527–538.

    Google Scholar 

  • Horwood, J. W., 1976: A critical investigation of small scale variability in phytoplankton. I.C.E.S. Contributions to Statutory Meeting, CM 1976/L:7, 6 pp.

    Google Scholar 

  • Horwood, J. W., 1978: An analysis of the spatial heterogeneity of surface chlorophyll in one and two dimensions. J. Mar. Biol. Ass. U.K., in press.

    Google Scholar 

  • Jenkins, G. M. and D. G. Watts, 1968: Spectral analysis and its applications. Holden-Day, San Francisco, 523 pp.

    Google Scholar 

  • Johnson, N. L. and S. Kotz, 1970: Continuous univariate distributions-1. Houghton Miflin Co., Boston, 300 pp.

    Google Scholar 

  • Kierstead, H. and L. B. Slobodkin, 1953: The size of water masses containing plankton blooms. J. Mar. Res., 12, 141–147.

    Google Scholar 

  • Lewis, P.A.W., 1970: Remarks on the theory, computation and application of the spectral analysis of a series of events. J. Sound Vib., 12, 353–376.

    Article  Google Scholar 

  • Longhurst, A. R., A. D. Reith, R. F. Bower and D.L.R. Scibert, 1966: A new system for the collection of multiple serial plankton samples. Deep-Sea Res., 13, 213–222.

    Google Scholar 

  • Mackas, D., 1976: Horizontal spatial heterogeneity of Zooplankton on the Fladen Ground. I.C.E.S. Contribution to Statutory Meeting, CM 1976/L:20, 5 pp.

    Google Scholar 

  • Okubo, A., 1972: A note on small organism diffusion around an attractive centre: a mathematical model. J. Oceanogr. Soc. Jap., 28, 1–7.

    Article  Google Scholar 

  • Pielou, E. C., 1957: The effect of quadrat size on the estimation of Neyman’s and Thomas’ distributions. J. Ecol., 45, 31–47.

    Article  Google Scholar 

  • Platt, T., 1972: Local phytoplankton abundance and turbulence. Deep-Sea Res., 19, 183–187.

    Google Scholar 

  • Platt, T., K. L. Denman and A. D. Jassby, 1977: Modelling the productivity of phytoplankton. In The Sea, E. D. Goldberg, I. N. McCave, J.J. O’Brien and J. H. Steele (eds.), pp. 807–856, Wiley-Interscience, New York.

    Google Scholar 

  • Skellam, J. G., 1951: Random dispersal in theoretical populations. Biometrika, 38, 196–218.

    PubMed  CAS  Google Scholar 

  • Skellam, J. G., 1958: On the derivation and applicability of Neyman’s type A distribution. Biometrika, 45, 32–36.

    Google Scholar 

  • Sneddon, I. N., 1957: Elements of partial differential equations. McGraw-Hill, New York, 327 pp.

    Google Scholar 

  • Steele, J. H. and E. W. Henderson, 1977: Plankton patches in the northern North Sea. In Fisheries Mathematics, J. H. Steele (ed.), pp. 1-19, Academic Press.

    Google Scholar 

  • Thompson, H. R., 1955: Spatial point processes with applications to ecology. Biometrika, 43, 102–115.

    Google Scholar 

  • Whittle, P., 1962: Topographic correlation, power-law covariance functions and diffusion. Biometrika, 49, 305–314.

    Google Scholar 

  • Wroblewski, J. S., J. J. O’Brien and T. Platt, 1975: On the physical and biological scales of phytoplankton in the ocean, Mem. Soc. Roy. Sci. Liege, 7, 43–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fasham, M.J.R. (1978). The Application of Some Stochastic Processes to the Study of Plankton Patchiness. In: Steele, J.H. (eds) Spatial Pattern in Plankton Communities. NATO Conference Series, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2195-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2195-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2197-0

  • Online ISBN: 978-1-4899-2195-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics