The Integration of Motor Control and Visual Perception

  • Jeffrey D. Holtzman
  • H. A. Sedgwick


A basic strategy in attempting to reach some understanding of the brain and its relation to behavior has been to simplify this forbiddingly complicated task by subdividing brain processes into functional subsystems that can then be studied more or less in isolation. The fruitfulness of this strategy obviously depends in part on an appropriate selection of meaningful subsystems to study, and over the years, various adjustments in this partitioning have been made. One of the most enduring divisions has been that between sensory/perceptual and motorIresponse systems.


Smooth Pursuit Motor Command Target Spot Retinal Motion Pursuit System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bach-Y-Rita, P. Symposium on basic mechanisms of ocular motility and their clinical implications. New York: Oxford University Press, 1975.Google Scholar
  2. Bridgeman, B., Lewis, L., Heit, G., & Nagle, M. Relation between cognitive and motor-oriented systems of visual position perception. Journal of Experimental Psychology: Human Perception and Performance, 1979, 5, 692 - 700.PubMedGoogle Scholar
  3. Brindley, G. S., & Merton, P. The absence of position sense in the human eye. Journal of/ Physiology (London), 1960, 153, 127 - 130.Google Scholar
  4. Brodal, S. Neurological anatomy in relation to clinical medicine. London: Oxford University Press, 1969.Google Scholar
  5. Brown, J. F. The visual perception of velocity. Psychological Forschung, 1931, 14, 199 - 232.CrossRefGoogle Scholar
  6. Cooper, S., & Daniel, P. M. Musc1e spindies in human extrinsic eye musc1es. Brain, 1949, 72, 1 - 24.Google Scholar
  7. Cooper, S., Daniel, P. M., & Whitteridge, D. Musc1e spindies and other sensory endings in lhe extrinsic eye musc1es: The physiology and anatomy of the receptors and their connections with the brainstem. Brain, 1955, 78, 564 - 583.Google Scholar
  8. Crane, H., & Steele, C. Accurate three-dimensional eye tracker. Applied Optics, 1978, 17, 691 - 704.PubMedCrossRefGoogle Scholar
  9. Dallos, P. J., & Jones, R. W. Learning behavior of the eye fixation control system. IEEE Transactions on Google Scholar
  10. Automatic Control, 1963, AC -8, 268-277.Google Scholar
  11. Dichgans, J., Korner, F., & Voigt, K. Vergleichende Skalierung des afferenten und efferenten Bewegungssehens beim Menschen: Lineare Funktionen mit verschiedener Anstiegssteilheit. Psychologische Forschung, 1960, 32, 277 - 295.CrossRefGoogle Scholar
  12. Dodge, R. The participation of the eye movements in the visual perception of motion. Psychological Review, 1904, 11, 1-14. Google Scholar
  13. Dodge, R. The "pendular whiplash illusion". Psychological Bulletin, 1910, 7, 390 - 394.CrossRefGoogle Scholar
  14. Festinger, L., & Easton, A. M. Inferences about the efferent system based on a perceptual illusion produced by eye movements. Psychological Review, 1974, 81, 44 - 58.PubMedCrossRefGoogle Scholar
  15. Festinger, L., Sedgwick, H. A. & Holtzman, J. D. Visual perception during smooth pursuit eye movements. Vision Research, 1976, 16, 1377 - 1386.PubMedCrossRefGoogle Scholar
  16. Fujii, E. Forming a figure by movement of a luminous point. Japanese Journal of Psychology, 1943, 18, 196 - 232.CrossRefGoogle Scholar
  17. Granit, R. The purposive brain. Cambridge, Mass.: MIT Press, 1977.Google Scholar
  18. Hanson, R. M., Skavinski A. S. Accuracy of eye position information for motor control. Vision Research, 1977, 17. 919 - 926.CrossRefGoogle Scholar
  19. Hayashi, K. The apparent path of a circularly moving spot (5th Report). Psychological Laboratory on the Hiyoshi Campus, 1971.Google Scholar
  20. Hayashi, K., & Kano, C. Apparent path of a stationary and circularly moving spot during the pursuit of the other spot by eye movement (10th Report). Psychological Laboratory on the Hiyoshi Campus, 1977.Google Scholar
  21. Helmholtz, H. Handbook of physiological optics. New York: Dover, 1867.Google Scholar
  22. Holtzman, J. D. The formulation and execution of motor commands for smooth pursuit eye movements. Unpublished doctoral dissertation, New School for Social Research, 1980.Google Scholar
  23. Holtzman. J. D., Sedgwick, H. A., & Festinger, L. Interaction of perceptually monitored and unmonitored efferent commands for smooth pursuit eye movements. Vision Research. 1978, 18. 1545 - 1555.CrossRefGoogle Scholar
  24. James, W. Principles of psychology. New York: Dover, 1890.Google Scholar
  25. Johansson, G. Conjigurations in event perception: An experimental study. Uppsala, Sweden: Almquist and Wiksells, 1950.Google Scholar
  26. Mack. A., & Herman, E. The 10ss of position constancy during pursuit eye movements. Vision Research. 1978, 18. 55 - 62.CrossRefGoogle Scholar
  27. Matin, L. A possible hybrid mechanism for modifkation of visual direction associated with eye movements-The paralyzed eye experiment reconsidered. Perception. 1975, 5. 233 - 239.CrossRefGoogle Scholar
  28. Merrillees, N. C. R., Sutherland, S., & Hayhow, W. Neuromuscular spindies in the extraocular muscles in man. Anatomical Record. 1950, J08. 23-30. Google Scholar
  29. Michael, J. A., & Jones, G. M. Dependence of visual tracking capability upon stimulus predictability. Vision Research. 1966, 6. 707 - 716.PubMedCrossRefGoogle Scholar
  30. Miller, J. M. Information available to the perceptual and oculomotor systems regarding saccidic and pursuit eye movements. Unpublished doctoral dissertation, New School for Social Research, 1977.Google Scholar
  31. Sedgwick, H. A., & Festinger, L. Eye movements, efference and visual perception. In R. A. Monty & J. W. Senders (Eds.), Eye movements and psychological processes. Hillside, N.J.: Erlbaum, 1976, pp. 221 - 230.Google Scholar
  32. Sherrington, C. S. Observations on the sensual role of proprioceptive nerve supply of the extrinsic ocular muscles. Brain. 1819, 41. 332 - 343.CrossRefGoogle Scholar
  33. Skavinski, A. A., Haddad, G., & Steinman, R. M. The extraretina1 signal for the visual perception of direction. Perception Psychophysics. 1972, 11. 287 - 290.CrossRefGoogle Scholar
  34. Stark, L., Vossius, G., & Young, L. R. Predictive control of eye movements. MIT Research Laboratory of Electronics, Cambridge Mass. Quarterly Progress Report No. 62. 1961, 271 - 284.Google Scholar
  35. St.-Cyr, G. S., & Fender, D. H. Non-linearities of the human oculomotor system: Gain. Vision Research, 1969, 9. 1235-1246. (a)Google Scholar
  36. St.-Cyr, G. S., & Fender, D. H. Non-linearities of the human oculomotor system: Time delays. Visual Research. 1969, 9. 1491-1503. (b)Google Scholar
  37. Steinbach, M. Pursuing the perceptual rather than the retinal stimulus. Vision Research. 1976, 16. 1371 - 1376.PubMedCrossRefGoogle Scholar
  38. Stoper, A. E. Vision during pursuit movement: The role of oculomotor information. Unpublished doctoral dissertation, Brandeis University, 1967.Google Scholar
  39. Wyatt, H. J., & Pola, J. The role of perceived motion in smooth pursuit eye movements. Vision Research. 1979, 19. 6\3-618.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Jeffrey D. Holtzman
    • 1
  • H. A. Sedgwick
    • 2
  1. 1.Department of Neurology, Division of Cognitive NeuroscienceCornell University Medical CollegeNew YorkUSA
  2. 2.Department of Vision SciencesState University of New York College of OptometryNew YorkUSA

Personalised recommendations