Music, Pitch Perception, and the Mechanisms of Cortical Hearing

  • John J. Sidtis


The fact that mental functions are asymmetrically represented in the cerebral hemispheres of humans has been central to much of the study of the relationship between brain functions and behavior over the past 25 years. This fact, of course, was recognized much earlier, largely beginning with the observations of Broca and Wernicke that language disturbances were associated with left-hemisphere damage. Subsequently, similar arguments about the lateralization of function in the brain have also been made about such nonlanguage functions as music. Although the behavioral disturbances seen in the neurological syndromes of aphasia or amusia are not typically modality-specific, they have provided important eIues about where 10 beg in the study of how the brain processes linguistic and nonlinguistic auditory patterns. Because of the strong association between language and left-hemisphere function, a useful working assumption has been that the characteristics of the speech perception process are likely to be quite similar, if not identical, to the characteristics of cortical hearing in the left hemisphere. On the other side of the brain, however, the characteristics of cortical hearing are less weIl understood. This chapter, then, focuses on one of the processes underlying the right hemisphere’s purported musical skills. The eIues broadly suggested by the clinical syndromes and narrowed by experimental studies with both normal subjects and patients with focal brain damage are considered here. Based on this evidence, it is argued that one of the areas in which the right hemisphere has a relative advantage over the left is in processing steady-state harmonic information, and it does so in a manner that is important in extracting pitch information from complex periodic sounds. This capacity, then, is a significant contributor to the apparent right-hemisphere advantage for some musical functions, and almost certainly, it plays a role in the right hemisphere’s contribution to the prosody of fluent speech.


Acoustical Society Dichotic Listening Complex Tone Pitch Perception Fluent Speech 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alajouanine, T. Aphasia and artistic realization. Brain, 1948, 71, 229 - 241.PubMedCrossRefGoogle Scholar
  2. Benton, A. L. The amusias. In M. Critchley & R. A. Henson (Eds.), Music anti the brain. Springfield, III.: Charles C Thomas, 1977.Google Scholar
  3. Berlin, C. I., & Cullen, J. K. Acoustic problems in dichotic listening. In S. Segalowitz & F. Grober (Eds.), Language development anti neurological theory. New York: Academic Press, 1977.Google Scholar
  4. Berlin, C., & Olroyd, M. Unpublished study reported in C. Berlin, Critical review of the literature on dichotic effects, 1970. 1971 Reviews of Scientijic Literature on Hearing. American Academy of Ophthalmology and Otolaryngology, 1972, 80 - 90.Google Scholar
  5. Berlin, C., Porter, R., Lowe·Bell, So., Berlin, H., Thompson, C., & Hughes, L. Dichotic signs of recognition of speech elements in normals, temporal lobectomies, and hemispherectomies. IEEE Transactions on Audio anti Electroacoustics, 1973, 21. 189 - 195.CrossRefGoogle Scholar
  6. Bever, T. G., & Chiarello, R. J. Cerebral dominance in musicians and nonmusicians. Science, 1974,185,137-139.Google Scholar
  7. Blumstein, S., & Cooper, W. E. Hemispheric processing of intonation contours. Cortex, 1974, 10, 146 - 158.PubMedCrossRefGoogle Scholar
  8. Blumstein, S., Goodglass, H., & Tartter, V. The reliability of ear advantage in dichotic listening. Brain anti Language, 1975, 2, 226 - 236.CrossRefGoogle Scholar
  9. Bocea, E., Calearo, C., Cassinari, V., & Migliavacca, F. Testing "cortical" hearing in temporal lobe tumors. Acta Otolaryngology, 1955, 45, 289 - 304.CrossRefGoogle Scholar
  10. Botez, M. I., & Wertheim, N. Expressive aphasia and amusia following right frontal lesion in a right-handed man. Brain, 1959, 82, 186 - 202.PubMedCrossRefGoogle Scholar
  11. Brust, J. C. M. Music and language: Musical alexia and agraphia. Brain, 1980, 103, 367-392. Google Scholar
  12. Cullen, J. K., Thompson, C. L., Hughes, L. F., Berlin, C. I., & Samson, D. S. The effects of varied acoustic parameters on performance in dichotic speech perception tasks. Brain anti Language, 1974,1, 307-322. Google Scholar
  13. Curry, F. A comparison of the performances of a right hemispherectomized subject and 25 normals on four dichotic 1istening tasks. Cortex, 1968, 4, 144 - 153.CrossRefGoogle Scholar
  14. Damasio, H., & Damasio, A. "Paradoxic" ear extinction in dichotic listening: Possible anatomie significance. Neurology, 1979, 29, 644 - 653.PubMedCrossRefGoogle Scholar
  15. Danly, M., deVilliers, J. G., & Cooper, W. E. The control of speech prosody in Broca's aphasia. In J. J. Wolf & D. H. Klatt (Eds.), Speech Communication Papers Presented at the 97th Meeting of the Acoustical Society of America. New York: Acoustical Society of America, 1979.Google Scholar
  16. Evans, E. F., Ross, H. F., & Whitfield, I. C. The spatial distribution of unit characteristic frequency in the primary auditory cortex of the cat. Journal of Physiology, 1965, 179, 238 - 247.PubMedGoogle Scholar
  17. Fletcher, H. The physical criterion for determining the pitch of a musical tone. Physical Review, 1924, 23, 427 - 437.CrossRefGoogle Scholar
  18. Gates, A., & Bradshaw, J. L. Music perception and cerebral asymmetries. Cortex, 1977(a), 13, 390 - 401.Google Scholar
  19. Gates, A., & Bradshaw, J. L. The role of the cerebral hemispheres in music. Brain and Language, 1977(b), 4, 403 - 431.Google Scholar
  20. Goldstein, J. L. An optimum processor theory for the central formation of the pitch of complex tones. Journal of the Acoustical Society of America, 1973, 54, 1496 - 1516.PubMedCrossRefGoogle Scholar
  21. Goldstein, M. H., Abeles, M., Daly, R. L., & McIntosh, J. Functional architecture in cat primary auditory cortex: Tonotopic organization. Journal of Neurophysiology, 1970, 33, 188 - 197.PubMedGoogle Scholar
  22. Goldstein, J. L., Gerson, P., Srulovicz, P., & Furst, M. Verification of the optimal probabilistic basis of aural processing in pitch of complex tones. Journal of the Acoustical Society of America, 1978, 63, 486 - 497.PubMedCrossRefGoogle Scholar
  23. Goodglass, H. Binaural digit presentation and early lateralized brain damage. Cortex, 1967, 2, 295 - 306.CrossRefGoogle Scholar
  24. Goodglass, H., & Calderon, M. Parallel processing of verbal and musical stimuli in right and left hemispheres. Neuropsychologia, 1977, 15, 397 - 407.PubMedCrossRefGoogle Scholar
  25. Gordon, H. W. Hemispheric asymmetries in the perception of musical chords. Cortex, 1970, 6, 387 - 397.PubMedCrossRefGoogle Scholar
  26. Gordon, H. W. Auditory specialization of the right and left hemispheres. In M. Kinsboume & W. L. Smith (Eds.), Hemispheric disconnection and cerebral function. Springfield, III.: Charles C Thomas, 1974.Google Scholar
  27. Gordon, H. W., & Bogen, J. E. Hemispheric lateralization of singing after intercarotid sodium amylobarbitone. Journal of Neurology, Neurosurgery and Psychiatry, 1974, 37, 727 - 738.PubMedCrossRefGoogle Scholar
  28. Haggard, M., & Parkinson, A. Stimulus and task factors as determinants of ear advantage. Quarterly Journal of Experimental Psychology, 1971, 23, 168 - 177.PubMedCrossRefGoogle Scholar
  29. Hall, J. W., & Peters, R. W. Change in the pitch of a complex tone following its association with a second tone. Journal of the Acoustical Society of America, 1982, 71, 142 - 146.PubMedCrossRefGoogle Scholar
  30. Heilman, K. M., Scholes, R., & Watson, R. T. Auditory affective agnosia. Journal of Neurology, Neurosurgery,and Psychiatry, 1975, 38, 69 - 72.PubMedCrossRefGoogle Scholar
  31. HeImholtz, H. L. On the sensations of tone. English translation of the 1885 edition by Alexander J. Ellis.New York: Dover Publications, 1954.Google Scholar
  32. Houtsma, A. J. M., & Goldstein, J. L. Tbe central origin of the pitch of complex tones: Evidence from musical interval recognition. Journal of the Acoustical Society of America, 1972, 51, 520 - 529.CrossRefGoogle Scholar
  33. Hughlings-Jackson, J. On affections of speech from disease of the brain. Brain, 1879, 2, 203 - 333.CrossRefGoogle Scholar
  34. Jerger, J. Audiological manifestations of lesions in the auditory nervous system. Laryngoscope, 1960, 79, 417 - 425.Google Scholar
  35. Johnson, P. R. Dichotically-stimulated ear differences in musicians and nonmusicians. Cortex, 1977, 13, 385 - 389.PubMedCrossRefGoogle Scholar
  36. Kallman, H., & Corballis, M. C. Ear asymmetry in reaction time to musical sounds. Perception and Psychophysics, 1975, 17, 368 - 370.CrossRefGoogle Scholar
  37. Kimura, D. Some effects of temporal-lobe damage on auditory perception. Canadian Journal of Psychology, 1961, 15, 156 - 165.PubMedCrossRefGoogle Scholar
  38. Kimura, D. Left-right differences in the perception of melodies. Quarterly Journal of Experimental Psychology, 1964, 16, 355 - 358.CrossRefGoogle Scholar
  39. Kimura, D. Functional asymmetry of the brain in dichotic listening. Cortex, 1967, 3, 163 - 178.CrossRefGoogle Scholar
  40. Licklider, J. C. R. Periodicity pitch and place pitch. Journal of the Acoustical Society of America, 1954,26,945(A).Google Scholar
  41. Lieberman, P., & MichaeIs, S. B. Some aspects of fundamental frequency and envelope amplitude as related to emotional content of speech. Journal of the Acoustical Society of America, 1962, 34, 922 - 927.CrossRefGoogle Scholar
  42. Luria, A. R. Higher cortical function in man. New York: Basic Books, 1966.Google Scholar
  43. Milner, B. Laterality effects in audition. In V. B. Mountcastle (Ed.), Interhemispheric relations and cerebral dominance. Baltimore: Johns Hopkins Press, 1962.Google Scholar
  44. Moe, C. R. An experimental study of subjective tones produced within the human ear. Journal of the Acoustical Society of America, 1942, 14, 159 - 166.CrossRefGoogle Scholar
  45. Monrad-Krohn, G. H. Dysptosody or altered "melody of language." Brain, 1947, 70, 405-415. (a)Google Scholar
  46. Monrad-Krohn, G. H. The prosodic quality of speech and its disorders. Acta Psycho/ogica et Neurologica, 1947, 22, 255-269. (b)Google Scholar
  47. Oxbury, J., & Oxbury, S. Effects of temporallobectomy on the report of dichotically presented digits. Cortex, 1969, 5, 3 - 24.PubMedCrossRefGoogle Scholar
  48. Pike, K. L. The intonation of American English. Ann Arbor: University of Michigan Press, 1945.Google Scholar
  49. Plomp, R. The ear as a frequency analyzer. Journal of the Acoustical Society of America, 1964, 36, 1628 - 1636.CrossRefGoogle Scholar
  50. Plomp, R. Detectability threshold for combination tones. Journal of the Acoustical Society of America, 1965, 37, 1110 - 1123.PubMedCrossRefGoogle Scholar
  51. Plomp, R. Pitch of complex tones. Journal of the Acoustical Society of America, 1967, 41, 1526–1533.PubMedCrossRefGoogle Scholar
  52. Ritsma, R. Frequeneies dominant in the perception of the pitch of complex sounds. Journal of the Acoustical Society of America, 1967, 42, 191 - 198.PubMedCrossRefGoogle Scholar
  53. Ritsma, R., & Engel, F. L. Pitch of frequeney modulated signals. Journal of the Acoustical Society of America, 1964, 36, 1637 - 1644.CrossRefGoogle Scholar
  54. Romani, G. L., Williamson, S. J., & Kaufman, L. Tonotopic organization of the human auditory cortex. Science, 1982, 216, 1339 - 1340.PubMedCrossRefGoogle Scholar
  55. Rose, J. E., Ga1ambos, R., & Hughes, J. R. Microeleetrode studies of the cochlear nucei of the cat. Bulletin of the Johns Hopkins Hospital, 1959, 104, 211-251. Google Scholar
  56. Ross, E. D. The aprosodias. Archives of Neurology, 1981, 38, 561 - 569.PubMedCrossRefGoogle Scholar
  57. Ross, E. D., & Mesulam, M. M. Dominant 1anguage functions of the right hemisphere. Archives of Neurology, 1979, 36, 144 - 148.PubMedCrossRefGoogle Scholar
  58. Schlanger, B. B., Schlanger, P., & Gertsman, L. J. The perception of emotionally toned sentenees by right-hemisphere damaged and aphasic subjeets. Brain and Language, 1976, 3, 396–403.PubMedCrossRefGoogle Scholar
  59. Schouten, J. F. The perception of subjective tones. Proceedings of the Koninklijke Nederlandse Academie van Wetenschappen, 1938, 41, 1086–1093.Google Scholar
  60. Schouten, J. F. The residue, a new component in subjective sound analysis. Proceedings of the Koninklijke Nederlandse Academie van Wetenschappen, 1940, 43, 356–365.Google Scholar
  61. Schouten, J. F., Ritsma, R. J., & Cardozo, L. B. Piteh of the residue. Journal of the Acoustical Society of America, 1962, 34, 1418 - 1424.CrossRefGoogle Scholar
  62. Schulhoff, C., & Goodglass, H. Dichotie 1istening, side of brain injury and cerebral dominance. Neuropsychologia, 1969, 7, 149 - 160.CrossRefGoogle Scholar
  63. Seebeck, A. Beobacntungen über einige Bedingungen der Entstehung von Tönen. Annalen der Physik und Chemie, 1841, 53, 417 - 436.Google Scholar
  64. Shanks, J., & Ryan, W. A comparison of aphasie and non-brain-injured adults on a dichotic CV syllable listening task. Cortex, 1976, 12, 100 - 112.PubMedCrossRefGoogle Scholar
  65. Shankweiler, D. Effects of temporal-lobe damage on the perception of dichotically presented melodies. Journal of Physiological Psychology, 1966, 62, 115 - 119.CrossRefGoogle Scholar
  66. Sidtis, J. J. Dichotic listening following commissurotomy. Symposium: Human split-brain research-The second decade. Washington, D. C.: Eastern Psychological Association, 1978.Google Scholar
  67. Sidtis, J. J. On the nature of cortical function underlying right hemisphere auditory function. Neuropsychologia, 1980, 18, 321 - 330.PubMedCrossRefGoogle Scholar
  68. Sidtis, J. J. The complex tone test implications for the assessment of auditory laterality effects. Neuropsychologla 1981, 19, 103 - 112.CrossRefGoogle Scholar
  69. Sidtis, J. J. Predicting lateralization from asymmetries that reflect left and right hemisphere functions. Brain and Language, 1982, 17, 287 - 300.PubMedCrossRefGoogle Scholar
  70. Sidtis, J. J., & Bryden, M. P. Asymmetrical perception of language and music: Evidence for independent processing strategies. Neuropsychologia, 1978 16, 621 - 632.CrossRefGoogle Scholar
  71. Sidtis, J. J., & Gazzaniga, M. S. Complex pitch perception after callosal section: Further evidence for a right hemisphere mechanism. Journal of the Acoustical Society of America, 1981, 69, S119.CrossRefGoogle Scholar
  72. Sidtis, J. J., & Volpe, B. T. Right hemisphere lateralization of complex pitch perception: A possible basis for amusia. Neurology, 1981, 31, 101. (a)Google Scholar
  73. Sidtis. J. J., & Volpe, B. T. Vocal pitch production in a patient with expressive dysprosody: A possible right hemisphere role in speech production. Journal of the Acoustical Society of America, 1981, 70,S52. (b)Google Scholar
  74. Sidtis, J. J., Volpe, B. T., Holtzman, J. D., Wilson, D. H., & Gazzaniga, M. S. Cognitive interaction after staged callosal section: Evidence for transfer of semantic interaction. Science, 1981, 212, 344 - 346.PubMedCrossRefGoogle Scholar
  75. Sidtis, J. J., Volpe, B.T., Wilson, D. H., Rayport, M., & Gazzaniga, M. S. Variability in right hemisphere language function after callosal section: Evidence for a continuum of generative capacity. Journal of Neuroscience, 1981, 1, 323 - 331.PubMedGoogle Scholar
  76. Small, A. M., & Campbell, R. A. Masking of pulsed tones by bands of noise. Journal of the Acoustical Society of America, 1961, 33, 1570 - 1576.CrossRefGoogle Scholar
  77. Smith, A. Speech and other functions after left (dominant) hemispherectomy. Journal of Neurology, Neurosurgery and Psychiatry, 1966, 29, 467 - 471.PubMedCrossRefGoogle Scholar
  78. Smith, A., & Burklund, C. W. Dominant hemispherectomy: Preliminary report on neuropsychological sequelae. Science, 1966, 153, 1280 - 1282.Google Scholar
  79. Sparks, R., Goodglass, H., & Nickel, B. Ipsilateral versus contralateral extinction in dichotic listening resulting from hemispheric lesions. Cortex, 1970, 6, 249 - 260.PubMedCrossRefGoogle Scholar
  80. Speaks, C., Gray, T., Miller, J., & Rubens, A. B. Central auditory deficits and temporal-lobe lesions. Journal of Speech and Hearing Disorders, 1975,40, 192-205. Google Scholar
  81. Spellacy, F. Lateral preferences in the identification of pattered stimuli. Journal of the Acoustical Soeiety of America, 1970, 47, 547 - 578.Google Scholar
  82. Spreen, 0., Benton, A. L., & Fincham, R. W. Auditory agnosia without aphasia. Archives of Neurology, 1965, 13, 84 - 92.CrossRefGoogle Scholar
  83. Springer, S. P., Sidtis, J., Wilson, D., & Gazzaniga, M. S. Left ear performance in dichotic listening following commissurotomy. Neuropsychologia, 1978, 16, 305 - 312.PubMedCrossRefGoogle Scholar
  84. Terhardt, E. Pitch, consonance, and harmony. Journal of the Acoustical Soeiety of America, 1974, 55, 1061 - 1069.CrossRefGoogle Scholar
  85. Thurlow, W. R., & Small, A. M. Pitch perception for certain periodic auditory stimuli. Journal of the Acoustical Society of America, 1955, 27, 132 - 137.CrossRefGoogle Scholar
  86. Tucker, D. M., Watson, R. T., & Heilman, K. M. Discrimination and evocation of affectively intoned speech in patients with right parietal disease. Neurology, 1977, 27, 947 - 950.PubMedCrossRefGoogle Scholar
  87. Van Lancker, D., & Fromkin, V. A. Tone and pitch perception. Paper presented to the Acoustical Society of America, 1972.Google Scholar
  88. von Bekesy, G. Nonlinear distortion in the ear. In G. von Bekesy, Experiments in hearing. New York: McGraw-HiII, 1960.)Google Scholar
  89. Wertheim, N. The amusias. In P. J. Vinken & G. W. Bruyn (Eds.), Handbook of clinical neurology (Vol. 4 ). Amsterdam: North Holland, 1969, 195 - 206.Google Scholar
  90. Wertheim, N., & Botez, M. I. Receptive amusia: A clinical analysis. Brain, 1961, 84, 19 - 30.PubMedCrossRefGoogle Scholar
  91. Wightman, F. L. The pattern-transformation model of pitch. Journal of the Aeoustical Society of America, 1973, 54, 407 - 416.CrossRefGoogle Scholar
  92. Wightman, F. L., & Green, D. M. The perception of pitch. American Scientist, 1974, 62, 208 - 215.PubMedGoogle Scholar
  93. Wolf, C. G. The processing of fundamental frequency in a dichotic matching task. Brain and Language, Google Scholar
  94. 1977,.
  95. Woolsey, C. N. Organization of cortical auditory system. In W. A. Rosenblith (Ed.l, Sensory communication.New York: Wiley, 1961.Google Scholar
  96. Zangwill, O. L. Speech and the minor hemisphere. Acta Neurologica Psychiatrica Belgica, 1967, 67, 1013 - 1020.Google Scholar
  97. Zurif, E. B. Auditory lateralization: Prosodic and syntactic factors. Brain and Language, 1974, I, 391-404. Google Scholar
  98. Zurif, E. B., & Mendelsohn, M. Hemispheric specialization for the perception of speech sounds: The influence of intonation and structure. Perception and Psychophysics, 1972, 11, 329 - 332.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • John J. Sidtis
    • 1
  1. 1.Department of Neurology, Division of Cognitive NeuroscienceCornell University Medical CollegeNew YorkUSA

Personalised recommendations