Special Processes Developed for Microcircuit Technology

  • Ivor Brodie
  • Julius J. Muray


Since we are illustrating the principles of microfabrication with application to microelectronics, we devote this chapter to discussing in some detail those special processes that have been developed for planar silicon technology, namely, epitaxy, oxidation, doping, and annealing. This is not to imply that analogous or similar processes could not or have not been applied to other materials and devices, but it reflects the fact that the major thrust in the microdevice area over the past two decades has been associated with silicon, and hence more work has been done in this area. We have included some special epitaxial processes developed for devices utilizing III–V compound semiconductors, since these are of emerging importance for high-speed microcircuits.


Special Process Epitaxial Layer Steam Pressure Nuclear Collision Laser Annealing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.W. Sah, Mechanisms in vapour epitaxy of semiconductors, in: Crystal Growth Theory and Techniques (C.H. Goodman, Ed.), Vol. 1 Plenum Press, London (1974).Google Scholar
  2. 2.
    R.M. Burger and R.P. Donovan (Eds.), Fundamentals of Silicon Integrated Device Technology, Vol. 1, Prentice-Hall, Englewood Cliffs, New Jersey (1967).Google Scholar
  3. 3.
    S. Nielsen and G.J. Rich, Preparation of epitaxial layers of silicon: I. Direct and indirect processes, Microelectron. Reliab., 165-170 (1964).Google Scholar
  4. 4.
    M.L. Hammond, Silicon epitaxy, Solid State Technol. 21, No. 11, 68 (November 1978).Google Scholar
  5. 5.
    R.W. Dutton, D.A. Antoniadis, J.D. Meindl, T.I. Kamins, K.C. Saraswat, B.E. Deal, and J.D. Plummer, Oxidation and epitaxy, Technical Report No. 5021-1, Integrated Circuit Laboratory, Stanford University, Stanford, California (May 1977).Google Scholar
  6. 6.
    T.I. Kamins, R. Reif, and K.C. Saraswat, Electrochemical Society Fall Meeting, Las Vegas, October 17–22, 1976, Abstract 230, Electrochemical Society, Princeton, New Jersey pp. 601-603 (1976).Google Scholar
  7. 7.
    R. Reif, T.I. Kamins, and K.C. Saraswat, Transient and steady-state response of the dopant system of an epitaxial reactor: Growth rate dependence, Electrochemical Society Fall Meeting, Atlanta, October 9–14, 1977, Abstract 350, Electrochem. Soc. J. 124, No. 8, 912-923 (1977).Google Scholar
  8. 8.
    J.D. Meindl, K.C. Saraswat, and J.D. Plummer, Semiconductor Silicon, Electrochemical Society, Princeton, New Jersey, pp. 894-909 (1977).Google Scholar
  9. 9.
    J.D. Meindl, K.C. Saraswat, R.W. Dutton, J.F. Gibbons, W. Tiller, J.D. Plummer, B.E. Deal, and T.I. Kamins, Final report on computer-aided semiconductor process modeling, Stanford Electronics Laboratories, Report TR-4969-73-F, Stanford University, Stanford, California (October 1976).Google Scholar
  10. 10.
    R. Reif, T.I. Kamins, and K.C. Saraswat, A model for dopant incorporation into growing silicon epitaxial films, J. Electrochem. Soc. 126, No. 4, 644 (April 1979).CrossRefGoogle Scholar
  11. 11.
    B.V. Vanderschmitt, Silicon-on-sapphire: An LSI/VLSI technology, RCA Eng. 24, No. 1 (June–July 1978).Google Scholar
  12. 12.
    L. Jastrzebski, Y. Imamura, and H.C. Gatos, Thickness uniformity of GaAs layers grown by electroepitaxy, J. Electrochem. Soc. 125, No. 7, 1140 (July 1978).CrossRefGoogle Scholar
  13. 13.
    L. Jastrzebski, J. Lagowski, H.C. Gatos, and A.F. Witt. Liquid-phase electroepitaxy: Growth kinetics, J. Appl. Phys. 49, No. 12, 5909 (December 1978).CrossRefGoogle Scholar
  14. 14.
    F. d’Heurle and P. Ho, Electromigration, in: Thin Films: Interdiffusion and Reactions (J.M. Poate, J. Mayer, and K.N. Tu, Eds., Wiley & Sons, New York (1978).Google Scholar
  15. 15.
    F.M. d’Heurle and R. Rosenberg, Electromigration in thin films, in: Physics of Thin Films, Vol 7, Academic Press, New York, pp. 257–310 (1973).Google Scholar
  16. 16.
    A.Y. Cho, Recent developments in molecular beam epitaxy (MBE), J. Vac. Sci. Technol. 16, No. 2, 275 (March–April 1979)CrossRefGoogle Scholar
  17. M.B. Parish, Molecular beam epitaxy, Science 208, 916 (May 1980).CrossRefGoogle Scholar
  18. 17.
    B.E. Deal and A.S. Grove, General relationship for the thermal oxidation of silicon, J. Appl. Phys. 36, No. 12, 3770–3778 (December 1965).CrossRefGoogle Scholar
  19. 18.
    B.E. Deal, The current understanding of changes in the thermally oxidized silicon structure, J. Electrochem. Soc. 121, No. 6, 198C (June 1974).CrossRefGoogle Scholar
  20. 19.
    J. Blanc, A revised model for the oxidation of Si by oxygen, Appl. Phys. Lett. 33, No. 5, 424 (September 1978).CrossRefGoogle Scholar
  21. 20.
    J.D. Meindl, K.C. Saraswat, R.W. Dutton, J.F. Gibbons, W. Tiller, J.D. Plummer, B.E. Deal, and T.I. Kamins, Computer aided engineering of semiconductor integrated circuits, Stanford University Integrated Circuit Laboratory, Report TR 4969-3, SEL-78-011, Stanford University, Stanford, California (February 1978).Google Scholar
  22. 21.
    M. Maeda, H. Kamioka, and M. Takagi, High pressure steam oxidation of silicon in a sealed quartz tube, in: Proceedings of the 13th Symposium on Semiconductors and IC Technology, Tokyo, November, 1977.Google Scholar
  23. 22.
    D.J. Levinthal, Diffusion system trends, Semicond. Int., 2(5) 31 (June 1979).Google Scholar
  24. 23.
    B.E. Deal, Standardizated terminology for oxide charges associated with thermally oxidized silicon, IEEE Trans. Electron Devices ED-27, No. 3, 606 (March 1980).CrossRefGoogle Scholar
  25. 24.
    G. Lucovsky and D.J. Chadi, Bond coordination defects at the Si/SiO2 interface, in: Physics of MOS Insulators, Pergamon Press, New York, pp. 301–305, 1980.Google Scholar
  26. 25.
    A.S. Grove and E.H. Snow, A model for radiation damage in metal-oxide semiconductor structures, Proc. IEEE 54, 894 (June 1966).CrossRefGoogle Scholar
  27. 26.
    P.J. Jorgensen, Effect of an electric field on silicon oxidation, J. Chem. Phys. 37, No. 4, 874 (August 1962).CrossRefGoogle Scholar
  28. 27.
    N. Cabrera and N.F. Mott, Theory of the oxidation of metals, Rep. Prog. Phys. 12, 163 (1948).CrossRefGoogle Scholar
  29. 28.
    A.S. Grove, Physics and Technology of Semiconductor Devices, Wiley & Sons, New York (1967).Google Scholar
  30. 29.
    S.K. Ghandhi, The Theory and Practice of Microelectronics, Wiley & Sons, New York (1968).Google Scholar
  31. 30.
    B.I. Boltaks, Diffusion in Semiconductors, Academic Press, New York (1963).Google Scholar
  32. 31.
    J.H. Crawford, Jr., and L.M. Slifkin (Eds.), Point Defects in Solids, Vol. 2, Plenum Press, New York (1972).Google Scholar
  33. 32.
    L.C. Kimerling and D.V. Lang, in: Lattice Defects in Semiconductors (J.E. Whitehouse, Ed.) Institute of Physics, London (1974).Google Scholar
  34. 33.
    G. Carter and W.A. Grant, Ion Implantation of Semiconductors, Edward Arnold, London (1976).Google Scholar
  35. 34.
    B.L. Crowder (Ed.), Ion Implantation in Semiconductors and Other Materials, Plenum Press, New York (1972).Google Scholar
  36. 35.
    J.W. Mayer, L. Eriksson, and J.A. Davies, Ion Implantation in Semiconductors, Silicon and Germanium, Academic Press, New York (1970).Google Scholar
  37. 36.
    J.F. Gibbons, Ion implantation in semiconductors—Part I: Range distribution theory and experiments, Proc. IEEE 56, No. 3, 295–319 (March 1968).MathSciNetCrossRefGoogle Scholar
  38. 37.
    J.F. Gibbons, Ion implantation in semiconductors—Part II: Damage production and annealing, Proc. IEEE 60, No. 9, 1062 (September 1972).MathSciNetCrossRefGoogle Scholar
  39. 38.
    J. Lindhard, M. Scharff, and H. Schioett, Atomic collisions II. Range concepts and heavy ion ranges, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 33, No. 14, 1 (1963).Google Scholar
  40. 39.
    J. Sansbury, Applications of ion implantation in semiconductor processing, Solid State Technol. 19, No. 11, 31 (November 1976).Google Scholar
  41. 40.
    J. Lindhard, Influence of crystall lattice on motion of energetic charged particles, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 34, No. 14 (1965).Google Scholar
  42. 41.
    P. Sigmund and J.B. Saunders, Spatial distribution of energy deposited by ionic bombardment, in: Proceedings of the International Conference on Applications of Ion Beams to Semiconductor Technology, Grenoble, France (P. Glotin, Ed.), Editions Ophrys, p. 215 (1967).Google Scholar
  43. 42.
    H.S. Rupprecht, New advances in semiconductor implantation, J. Vac. Sci. Technol. 15, No. 5, 1669 (September–October 1978).CrossRefGoogle Scholar
  44. 43.
    J. Gibbons, W.S. Johnson, and S. Mylroie, Projected Range Statistics in Semiconductors, 2nd ed., Wiley & Sons, New York (1975)Google Scholar
  45. D.K. Brice, Ion Implantation Range and Energy Deposition Distributions, Plenum, New York (1975)Google Scholar
  46. K. Bruce Winterbon, Ion Implantation Range and Energy Deposition Distributions, Vol. 2, Plenum, New York, (1975).Google Scholar
  47. 44.
    L.A. Christel, J.F. Gibbons, S. Mylroie, An application of the Boltzmann transport equation to ion range and damage distributions in multi-layered targets, J. Appl. Phys. 51, No. 12, 6176 (December 1980)CrossRefGoogle Scholar
  48. D.H. Smith and J.F. Gibbons, Ion Implantation in Semiconductors, 1976, Plenum, New York, p. 333, New York, (1977)CrossRefGoogle Scholar
  49. R.A. Moline, G.W. Reutlinger, and J.C. North, Proceedings of the Fifth International Conference on Atomic Collisions in Solids, Plenum Press, New York (1976).Google Scholar
  50. 45.
    Z.L. Liau and J.W. Mayer, Limits of composition achievable by ion implantation, J. Vac. Sci. Technol. 15, No. 5, 1629 (September–October 1978).CrossRefGoogle Scholar
  51. 46.
    J.W. Cleland, K. Lark-Horovitz and J.C. Pigg, Transmutation-produced germanium semiconductors, Phys. Rev. 78, 814 (1950).CrossRefGoogle Scholar
  52. 47.
    H.M. Janus, Application of NTD Silicon for Power Devices in Neutron Transmutation Doping in Semiconductors (J.M. Meese, Ed.), Plenum Press (1978).Google Scholar
  53. 48.
    H.M. Janus and O. Malmros, Application of thermal neutron irradiation for large scale production of homogeneous phosphorus doping of float zone silicon, IEEE Trans. Electron Devices ED-23 No. 8, 797 (August 1976).Google Scholar
  54. 49.
    J.M. Meese, The NTD ProcessA New Reactor Technology in Neutron Transmutation Doping in Semiconductors (J.M. Meese, Ed.), Plenum Press (1978).Google Scholar
  55. 50.
    S. Prussin and J.W. Cleland, Application of neutron transmutation doping for production of homogeneous epitaxial layers, J. ElectroChem. Soc. 125, No. 2, 350 (February 1978).CrossRefGoogle Scholar
  56. 51.
    A.E. Bell, Review and analysis of laser annealing, RCA Rev. 40, 295 (September 1979).Google Scholar
  57. 52.
    R.T. Young, C.W. White, G.J. Clark, J. Narayan, W.H. Christie, M. Murakami, P.W. King, and S.D. Kramer, Laser annealing of boron-implanted silicon, Appl. Phys. Lett. 32, No. 3, 139 (February 1978).CrossRefGoogle Scholar
  58. 53.
    G.K. Celler, J.M. Poate, and L.C. Kimerling, Spatially controlled crystal growth regrowth of ion-implanted silicon by laser irradiation, Appl. Phys. Lett. 32, No. 8, 464 (April 1978).CrossRefGoogle Scholar
  59. 54.
    P. Baeri, S.U. Campisano, G. Foti, and E. Rimini, Arsenic diffusion in silicon melted by high-power nanosecond laser pulsing, Appl. Phys. Lett. 33, No. 2, 137 (July 1978).CrossRefGoogle Scholar
  60. 55.
    J.C. Muller, A. Grob, J.T. Grob, R. Stuck, and P. Stiffert, Laser-beam annealing of heavily damaged implanted layers on silicon, Appl. Phys. Lett. 33, No. 4, 287 (August 1978).CrossRefGoogle Scholar
  61. 56.
    A. Gat, J.F. Gibbons, T.J. Magee, J. Peng, P. Williams, V. Deline, and C.A. Evans, Jr., Use of a scanning cw Kr laser to obtain diffusion-free annealing of B-implanted silicon, Appl. Phys. Lett. 33, No. 5 389 (1978).CrossRefGoogle Scholar
  62. 57.
    T.N.C. Venkatesan, J.A. Golovchenko, J.M. Poate, P. Cowan, and G.K. Celler, Dose dependence in the laser annealing of arsenic-implanted silicon, Appl. Phys. Lett. 33, No. 5, 429 (September 1978).CrossRefGoogle Scholar
  63. 58.
    C.W. White, W.H. Cristie, B.R. Appleton, S.R. Wilson, P.P. Pronko, and C.W. Magee, Redistribution of dopants in ion-implanted silicon by pulsed-laser annealing, Appl. Phys. Lett. 33, No. 7, 662 (October 1978).CrossRefGoogle Scholar
  64. 59.
    P. Baeri, S.U. Campisano, G. Foti, and E. Rimini, A melting model for pulsing-laser annealing of implanted semiconductors, J. Appl. Phys. 50, No. 2, 788 (February 1979).CrossRefGoogle Scholar
  65. 60.
    D.H. Auston, J.A. Golovchenko, and T.N.C. Venkatesan, Dual-wavelength laser annealing, Appl. Phys. Lett. 34, No. 9, 558 (May 1979).CrossRefGoogle Scholar
  66. 61.
    S.S. Lau, J.W. Mayer, and W.F. Tseng, Comparison of laser and thermal annealing of implanted-amorphous silicon in laser-solid interactions and laser processing, AIP Conf. Proc. No. 50(1979).Google Scholar
  67. 62.
    A. Gat and J.F. Gibbons, A laser-scanning apparatus for annealing of ion-implantation damage in semiconductors, Appl. Phys. Lett. 32, No. 3, 142 (February 1978).CrossRefGoogle Scholar
  68. 63.
    R.B. Fair, Modelling laser-induced diffusion of implanted arsenic in silicon, J. Appl. Phys. 50, No. 10, 6552 (October 1979).CrossRefGoogle Scholar
  69. 64.
    M.W. Geis, D.C. Flanders, H.I. Smith, and D.A. Antoniadis, Grapho-epitaxy of silicon on fused silica using surface micropatterns and laser crystallization, J. Vac. Sci. Technol. 16, No. 6, 1640 (November-December 1979).CrossRefGoogle Scholar
  70. 65.
    A.R. Kirkpatrick, J.A. Minnucci, and A.C. Greenwald, Silicon solar cells by high-speed low-temperature processing, IEEE Trans. Electron Devices ED-24, No. 4, 429 (April 1977).CrossRefGoogle Scholar
  71. 66.
    R.G. Little and A.C. Greenwald, An advancement in semiconductor processing, Semicond. Int., 2(1) 81 (January–February 1979).Google Scholar
  72. 67.
    K.N. Ratnakumar, R.F.W. Pease, D.J. Bartelink, and N.M. Johnson, Scanning electron beam annealing with a modified SEM, J. Vac. Sci. Technol. 16, No. 6, 1843 (November–December 1979).CrossRefGoogle Scholar
  73. 68.
    A. Neukermans and W. Saperstein, Modeling of beam voltage effects in electron-beam annealing, J. Vac. Sci. Technol. 16, No. 6, 1847 (November–December 1979).CrossRefGoogle Scholar
  74. 69.
    D.A. Antoniadis, S.E. Hansen, R.W. Dutton and G. Gonzalez, SUPREM 1-A program for I.C. process modelling and simulation, Technical Report No. 5019-1, Integrated Circuit Laboratory, Stanford University, Stanford, California (May 1977).Google Scholar
  75. 70.
    C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley Publishing Company, Reading, Massachusetts (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Ivor Brodie
    • 1
  • Julius J. Muray
    • 1
  1. 1.SRI International (formerly Stanford Research Institute)Menlo ParkUSA

Personalised recommendations