Skip to main content

Particle Beams: Sources, Optics, and Interactions

  • Chapter
The Physics of Microfabrication
  • 173 Accesses

Abstract

A key element in our ability to view, fabricate, and in some cases operate microdevices has been the availability of tightly focused particle beams, particularly of photons, electrons, and ions. Consideration of diffraction effects leads to the general rule that if one wishes to focus a beam of particles into a spot of a given size, the wavelength associated with the particles must be less than the required spot diameter. In Table 1 are listed the wavelengths (in μm) of three particles (photons, electrons, and protons) at various energies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. B. Nottingham, Thermionic emission, in: Handbuch der Physik (S. Flugge, Ed.) Vol. 21, Springer-Verlag, Berlin, pp. 1–175 (1956).

    Google Scholar 

  2. R. H. Good, Jr., and E. W. Müller, Field emission, in: Handbuch der Physik (S. Flugge, Ed.) Vol. 21, Springer-Verlag, Berlin, pp. 176–231 (1956).

    Google Scholar 

  3. E. L. Murphy and R. H. Good, Jr., Thermionic emission, field emission, and the transition region, Phys. Rev. 102, 1464–1473 (1956).

    Article  Google Scholar 

  4. L. D. Smullin and H. A. Haus (Ed.), Noise in Electron Devices, MIT Press and Wiley & Sons, New York (1959).

    Google Scholar 

  5. I. Brodie, Studies of field emission and electrical breakdown between extended nickel surfaces in vacuum, J. Appl. Phys. 35, 2322–2324 (pages reverse numbered) (1964).

    Article  Google Scholar 

  6. A. Van Oostrom, Field emission cathodes, J. Appl Phys. 33, 2917–2922 (1962).

    Article  Google Scholar 

  7. F. M. Charbonnier, R. W. Straeger, L. W. Swanson, and E. E. Martin, Nottingham effect in field and T-F emission, Phys. Rev. Lett. 13, 397–401 (1964).

    Article  Google Scholar 

  8. I. Brodie, The temperature of a strongly field emitting surface, Int. J. Electron. 18, 223–233 (1965).

    Article  Google Scholar 

  9. G. A. Haas, Electron Sources: Thermionic Methods of Experimental Physics (C. Marton, Ed.) Vol. 4, Part A, Academic Press, New York, pp. 1–38 (1967).

    Google Scholar 

  10. R. G. Murray and R. J. Collier, Thoriated tungsten hairpin filament electron source for high brightness applications, Rev. Sci. Instrum. 48, No. 7, 870–873 (1977).

    Article  Google Scholar 

  11. A. N. Broers, Thermal cathode illumination systems for round beam electron pulse systems, Scanning Electron Microsc. 1971/I, (1971).

    Google Scholar 

  12. G. Hermann and S. Wagener, The Oxide Coated Cathod, I & II, Chapman and Hall, London (1951).

    Google Scholar 

  13. R. Levi, Improved barium dispenser cathode, J. Appl. Phys. 26, 639 (1955).

    Article  Google Scholar 

  14. I Brodie and R.O. Jenkins, “Impregnated Barium Dispenser Cathodes Containing Strontium or Calcium Oxide,” J. Appl. Phys. 27, 411 (1956).

    Article  Google Scholar 

  15. P. Zalm and A. J. A. van Stratum, Osmisum dispenser cathodes, Philips Tech. Rev. 27, 69 (1966).

    Google Scholar 

  16. R. E. Thomas, T. Pankey, and G. A. Haas, Thermionic properties of BaO on iridium, Appl. Surf. Sci. 2, 187–212 (1979).

    Article  Google Scholar 

  17. L. W. Swanson and N. A. Martin, Zirconium/tungsten thermal field cathode, J. Appl. Phys. 46, 2029–2050 (1975).

    Article  Google Scholar 

  18. C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, Physical properties of thin film field emission cathodes, J. Appl. Phys. 47, 5248–5262 (1976).

    Article  Google Scholar 

  19. L. W. Swanson and G. A. Schwind, Electron emission from a liquid metal, J. Appl. Phys. 49, No. 11, 5655–5662 (1978).

    Article  Google Scholar 

  20. H. Moss, Narrow Angle Electron Guns and Cathode Ray Tubes, Academic Press, New York (1968).

    Google Scholar 

  21. O. Klemperer and M. E. Bainett, Electron Optics, Cambridge University Press, Cambridge (1971).

    MATH  Google Scholar 

  22. P. Grivet, Electron Optics, Pergamon Press, New York (1972).

    Google Scholar 

  23. A. Septier, Focusing of Charged Particles, I and II, Academic Press, New York (1967).

    Google Scholar 

  24. W. Glaser, Grundlagen der Electronenoptik, Springer-Verlag, Vienna, (1952).

    Google Scholar 

  25. V. K. Zworykin, G. A. Morton, E. G. Ramberg, J. Hillier, and A. W. Vance, Electron Optics and the Electron Microscope, Wiley & Sons, New York (1945).

    MATH  Google Scholar 

  26. H. Boersch, Experimentelle Bestimmung der Energieverteilung in thermisch ausgelosten Electrononstrahlen, Z. Phys. 139, 115–146 (1954).

    Article  Google Scholar 

  27. K. H. Loeffler, Energy-spread generation in electron-optical instruments, Z. Angew. Phys. 27, No. 3 (July 1969).

    Google Scholar 

  28. K. H. Loeffler and R. M. Hudgin, Energy spread generation and image deterioration by the stochiastic interactions between beam electrons, 7 th Proceedings of the International Congress on Electron Microscopy, Grenoble, France, 1970, p. 67 (1970).

    Google Scholar 

  29. H. C. Pfeiffer, Experimental investigation of energy broadening in electron optical instruments, IEEE 11th Symposium on Electron, Ion, and Laser Beam Technology, San Francisco Press, San Francisco, p. 239 (1971).

    Google Scholar 

  30. R. Lauer, Ein einfaches Modell für Elektronenkanonen mit gekrümmter Kathodenober-flache, Z. Naturforsch. 23a, No. 2, 100–109, (January 1968).

    Google Scholar 

  31. J. R. Pierce, Theory and Design of Electron Beams, Van Nostrand, Princeton, New Jersey (1954).

    Google Scholar 

  32. T. E. Everhart, Simplified analysis of point-cathode electron sources, J. Appl. Phys. 38, 4944 (1967).

    Article  Google Scholar 

  33. A. V. Crewe, J. Wall, and L. M. Welter, A high resolution scanning transmission electron microscope, J. Appl. Phys. 39, No. 13, 5861 (1968).

    Article  Google Scholar 

  34. R. G. Wilson and G. R. Brewer, Ion Beams: With Applications to Ion Implantation, Wiley & Sons, New York (1973).

    Google Scholar 

  35. G. Carter and W. A. Grant, Ion Implantation of Semiconductors, Halstead Press, New York (1976).

    Google Scholar 

  36. L. Valyi, Atom and Ion Sources, Wiley & Sons, New York (1978).

    Google Scholar 

  37. L. B. Loeb, Basic Processes of Gaseous Electronics, University of California Press, Berkeley, California (1960).

    Google Scholar 

  38. M. von Ardenne, Tabellen der Elektronenphysik, Ionenphysik, und Ubermikroskopie Band I und II, Deutscher Verlag der Wissenschaften, Berlin (1956).

    Google Scholar 

  39. N. B. Brooks, P. H. Rose, A. B. Wittkower, and R. P. Bastide, Production of low divergence positive ion beams of high intensity, Rev. Sci. Instrum. 35, No. 7, 894 (July 1964).

    Article  Google Scholar 

  40. J. Orloff and L. W. Swanson, A scanning ion microscope with a field ionization source, Scanning Electron Micros. 1977/I, 57–62 (1977).

    Google Scholar 

  41. J. H. Orloff and L. W. Swanson, Study of a field-ionization source for microprobe applications, J. Vac. Sci. Technol. 12, No. 6, 1209–1213 (November–December 1976).

    Article  Google Scholar 

  42. L. W. Swanson, G. A. Schwind, and A. E. Bell, Emission characteristics of a liquid gallium ion source, Scanning Electron Microsc. 1979/I, 45–51 (1979).

    Google Scholar 

  43. R. Clampitt, K. L. Aitken, D. K. Jefferies, Intense field emission ion source of liquid metals, J. Vac. Sci. Technol. 12, No. 6 1208 (November–December 1976).

    Article  Google Scholar 

  44. R. Gomer, On the mechanism of liquid metal electron and ion sources, Appl. Phys. 19, 365–375 (1979).

    Article  Google Scholar 

  45. L. W. Swanson, G. A. Schwind, A. E. Bell, and J. E. Brady, Emission characteristics of gallium and bismuth liquid metal field-ion sources, J. Vac. Sci. Technol. 16, No. 6, 1864–1867 (1979).

    Article  Google Scholar 

  46. G. I. Taylor, Disintegration of water drops in an electric field, Proc. R. Soc. London 280A, 383 (1964).

    Google Scholar 

  47. R. L. Seliger, J. W. Ward, V. Wang, and R. L. Kubena, A high-intensity scanning ion probe with submicrometer spot size, Appl. Phys. Lett. 34, No. 5, 310 (1979).

    Article  Google Scholar 

  48. J. R. Pierce, Theory and Design of Electron Beams, Van Nostrand, New York (1954).

    Google Scholar 

  49. B. J. Thompson and L. B. Headrick, Space-charge limitations on the focus of electron beams, Proc. IRE 28, No. 7, 318 (July 1940).

    Article  Google Scholar 

  50. J. W. Schwartz, Space-charge limitation on the focus of electron beams, RCA Rev. 18, No. 1, 3 (1957).

    Google Scholar 

  51. E. L. Ginzton and B. H. Wadia, Positive ion trapping in electron beams, Proc. IRE 42, No. 10, 1548 (October 1954).

    Article  Google Scholar 

  52. L. A. Harris, Physics of electron beam fundamentals, in: Electron Beam Technology (R. Bakish, Ed.), Wiley & Sons, New York (1962).

    Google Scholar 

  53. W. Glaser, Grundlagen der Electronen Optik, Springer-Verlag, Vienna (1952).

    Google Scholar 

  54. Focusing of Charged Particles I-II (A Septier, Ed.), Academic Press, New York, (1967).

    Google Scholar 

  55. O. Klemperer, Electron Optics, Cambridge University Press, Cambridge (1971).

    MATH  Google Scholar 

  56. N.D. Wittels, Unipotential lens with electron-transparent electrodes, J. Vac. Sci. Technol. 12, No. 6, 1165–1168 (November–December 1976).

    Article  Google Scholar 

  57. A.J.F. Metherell, Energy analyzing and energy selecting electron microscopes, in: Advances in Optical and Electron Microscopy, (R. Barer and V.E. Cosslett, Eds.), Vol. 4, Academic Press, London (1971).

    Google Scholar 

  58. J.C. Tracy, in: Electron Emission Spectroscopy (W. Dekeyser, L. Fiermans, G. Vanderkelen, and J. Vennick, Eds.), Reidel, Dordrecht, Netherlands, p. 331, (1973).

    Google Scholar 

  59. R.G.E. Hutter, The deflection of electron beams, in: Advances in Image Pickup and Display, I, Academic Press, New York, pp. 163–224 (1974).

    Google Scholar 

  60. C.C.T. Wang, Analysis of electrostatic small-angle deflection, IEEE Trans. Electron Devices ED-18, No. 4, 258 (April 1971).

    Article  Google Scholar 

  61. L.N. Heynick, High-information-density storage surfaces, Research and Development Technical Report No. ECOM-01261-F, Stanford Research Institute, Menlo Park, California (January 1970).

    Google Scholar 

  62. J. Kelly, Adv. Electron. Electron Phys. 43, 43–135 (1977).

    Article  Google Scholar 

  63. C.C.T. Wang, Computer calculations of deflection aberrations in electron beams, IEEE Trans. Electron Devices ED-14, No. 7, 357 (July 1967).

    Article  Google Scholar 

  64. C.C.T. Wang, Two-dimensional small-angle deflection theory, IEEE Trans. Electron Devices ED-15, No. 8, 603 (August 1968).

    Article  Google Scholar 

  65. C.B. Duke and R.L. Park, Surface structure—An emerging spectroscopy, Phys. Today 25, No. 8, 23–28 (August 1972).

    Article  Google Scholar 

  66. P.F. Kane and G.B. Larrabee (Eds.), Characterization of Solid Surfaces, Plenum Press, New York (1974).

    Google Scholar 

  67. E.W. Müller and T.T. Tsong, Field Ion Microscopy, American Elsevier, New York (1969).

    Google Scholar 

  68. M. Isaacson, All you might want to know about ELS (but are afraid to ask): A tutorial, Scanning Electron Microsc. 1978/I, 763–776 (1978).

    Google Scholar 

  69. V.E. Cosslett and R.N. Thomas, Multiple scattering of 5-30 keV electrons in evaporated metal films, I: Total transmission and angular distribution, Br. J. Appl. Phys. 15, 883 (1964).

    Article  Google Scholar 

  70. J.P. Langmore, J. Wall, and M.S. Isaacson, Collection of scattered electrons in dark field electron microscopy, I: Elastic scattering, Optik (Stuttgart) 38, No. 4, 335–350 (September 1973).

    Google Scholar 

  71. R.W. Nosker, Scattering of highly focused kilovolt electron beams by solids, J. Appl. Phys. 40, 1872–1882 (March (March 1969).

    Article  Google Scholar 

  72. F.W. Inman and J.J. Muray, Transition radiation from relativistic electrons crossing dielectric boundaries, Phys. Rev. 142, No. 1, 272 (February 1966).

    Article  Google Scholar 

  73. H.A. Bethe, M.E. Rose, and L.P. Smith, Multiple scattering of electrons, Am. Philos. Soc. Proc. 78, No. 4, 573–585 (1938).

    Google Scholar 

  74. H. Raether, Electron excitations in solids, Springer Tracts Mod. Phys. 38, 85 (1965).

    Google Scholar 

  75. T.E. Everhart and P.H. Hoff, Determination of kilovolt electron energy dissipation vs. penetration distance in solid materials, J. Appl. Phys. 42, No. 13, 5837–5846 (December 1971).

    Article  Google Scholar 

  76. L. Reimer, Electron-specimen interactions, Scanning Electron Microsc. 1979/II, 111–124 (1979).

    Google Scholar 

  77. D.B. Brown and R.E. Ogilvie, An evaluation of the archard electron diffusion model, J. Appl. Phys. 35, No. 10, 2793–2795 (1964).

    Article  Google Scholar 

  78. T.E. Everhart, Simple theory concerning the reflection of electrons from solids, J. Appl. Phys. 31, No. 8, 1483 (August 1960).

    Article  Google Scholar 

  79. H. Kanter, Zur Ruckstreuung von Elektronen im Energiebereich von 10 bis 100 keV, Ann. Phys., (FRG), 20, 144–166 (1957).

    Article  Google Scholar 

  80. L. Reimer, W. Poepper, and W. Broeker, Experiments with a small solid angle detector for BSE, Scanning Electron Microsc. 1978/I, 705–710 (1978).

    Google Scholar 

  81. H. Seiler, Determination of the information depth in the SEM, Scanning Electron Microsc. 1976/I, 9–16 (1976).

    Google Scholar 

  82. S.A. Blankenburg, J.K. Cobb, and J.J. Muray, Efficiency of secondary electron emission monitors for 70 MeV electrons, Nucl. Instrum. Methods 39, 303–308 (1966).

    Article  Google Scholar 

  83. O. Hachenberg and W. Brauer, Secondary electron emission from solids, Adv. Electron. Electron Phys. 11, 413 (1959).

    Article  Google Scholar 

  84. H. Seiler, Einige aktuelle Probleme der Sekundarelektronenemission, Z. Angew. Phys. 22, 249 (1967).

    Google Scholar 

  85. W. Heitier, The Quantum Theory of Radiation, Oxford Press, Oxford (1954).

    Google Scholar 

  86. R.D. Evans, The Atomic Nucleus, McGraw-Hill, New York (1955).

    MATH  Google Scholar 

  87. J.T. Grant, T.W. Haas, and J.E. Houston, Quantitative comparison of Ti and TiO surfaces using Auger electron and soft X-ray appearance potential spectroscopies, J. Vac. Sci. Technol 11, No. 1, 227-230 (January–February 1974).

    Google Scholar 

  88. S.J.B. Reed, Electron Microprobe Analysis, Cambridge University Press, London (1975).

    Google Scholar 

  89. C.R. Worthington and S.G. Tomlin, The intensity of emission of characteristic X-ray radiation, Proc. Phys. Soc. London 69A, No. 5, 401 (1956).

    Google Scholar 

  90. P.F. Kane and G.B. Larrabee (Eds.), The Characteristics of Solid Surfaces, Plenum Press, New York (1974).

    Google Scholar 

  91. C.K. Crawford, Electron beam machining, in: Introduction to Electron Beam Technology (R. Bakish, Ed.), Wiley & Sons, New York (1962).

    Google Scholar 

  92. J. Lindhard and M. Scharff, Energy dissipation by ions in the keV region, Phys. Rev. 124, 128 (October 1961).

    Article  Google Scholar 

  93. G.M. McCracken, The behaviour of surfaces under ion bombardment, Rep. Prog. Phys. 38, No. 2, 241–327 (February 1975).

    Article  Google Scholar 

  94. G. Dearnaley, Ion bombardment and implantation, Rep. Prog. Phys. 32, No. 4, 405–492 (August 1969).

    Article  Google Scholar 

  95. R.J. MacDonald, The ejection of atomic particles from ion bombarded solids, Adv. Phys. 19, No. 80, 457–524 (July 1970).

    Article  Google Scholar 

  96. J. Lindhard, M. Scharff, and H. Schiott, Range concepts and heavy ion ranges, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 33, No. 14, 39 (1963).

    Google Scholar 

  97. J.F. Gibbons, Ion implantation in semiconductors, Part I, Range distribution theory and experiments, Proc. IEEE 56, No. 3, 295–319 (1968).

    Article  MathSciNet  Google Scholar 

  98. G. Carter and J.S. Colligon, Ion Bombardment of Solids, Elsevier, New York (1968).

    Google Scholar 

  99. J. Lindhard and A. Winther, Stopping power of electron gas and equipartition rule, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 34, No. 4, 1 (1964).

    Google Scholar 

  100. O.B. Firsov, A qualitative interpretation of the mean electron excitation energy in atomic collisions, J. Exp. Theor. Phys., (USSR), 36, No. 5, 1517–1523 (May 1959).

    Google Scholar 

  101. S.A. Schwarz and C.R. Helms, A statistical model of sputtering, J. Appl. Phys. 50, No. 8, 5492 (August 1979).

    Article  Google Scholar 

  102. J. Lindhard, Influence of crystal lattice on motion of energetic charged particles, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 34, No. 14, 64 (1965).

    Google Scholar 

  103. P. Sigmund, Theory of sputtering, I: Sputtering yield of amorphous and polycrystalline targets, Phys. Rev. 184, No. 2, 184 (August 1969).

    Article  Google Scholar 

  104. S.A. Schwarz and C.R. Helms, A statistical model of sputtering, J. Appl. Phys. 50, 5492 (1979).

    Article  Google Scholar 

  105. E. Spiller and R. Feder, X-ray lithography, Top. Appl. Phys. 22, 35 (1977).

    Article  Google Scholar 

  106. D.J. Nagel, R.R. Whitlock, J.R. Greig, R.E. Pechacek, and M.C. Peckeran, Laser-plasma source for pulsed X-ray lithography, Proc. Soc. Photo-Optical Instrum. Eng. (SPIE) Development in Semiconductor Micro-Lithography III, 135, 46 (1978).

    Article  Google Scholar 

  107. R.Z. Bachrach, I. Lindau, V. Rehn, and J. Stohr, Report of the beam line III, Stanford Synchrotron Radiation Laboratory Report, SSRL, 77/14 (1977).

    Google Scholar 

  108. J.D. Cuthbert, Optical projection printing, Solid State Technol. 20(8) 59 (August 1977).

    Google Scholar 

  109. E.M. Breinan, B.H. Kear, and C.M. Banas, Processing materials with lasers, Phys. Today 29, No. 11, 44 (November 1976).

    Article  Google Scholar 

  110. A.E. Bell, Review and analysis of laser annealing, RCA Rev. 40, No. 3, 295–338 (September 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brodie, I., Muray, J.J. (1982). Particle Beams: Sources, Optics, and Interactions. In: The Physics of Microfabrication. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2160-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2160-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2162-8

  • Online ISBN: 978-1-4899-2160-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics