Aspects of Electronic Configuration Interaction in Molecular Photoionization

  • P. W. Langhoff
Part of the Physics of Atoms and Molecules book series (PAMO)


Experimental studies have been reported recently of partial-channel photoionization cross sections in diatomic and polyatomic molecules1–3. Many of the measured cross sections can be understood and clarified quantitatively on basis of theoretical studies in the so-called separated-channel static-exchange approximation4. In this approach, Hartree-Fock functions are employed for the electronic portions of target ground states, and corresponding continuum molecular eigenfunctions are constructed in the orbital approximation employing non-central static-exchange potentials. Consequently, the calculated partial-channel cross sections so obtained refer simply to the separate removal of electrons from the individual molecular orbitals of a molecule, and they do not take into account the configuration mixing possible among the various ionization channels. There are important cases, however, in which the effects of electronic configuration interaction do not simply provide small corrections to separated-channel static-exchange results, but, rather, dominate the spectral characteristics of partial-channel cross sections5–7. In these cases it is generally necessary to include initial and final-state configuration-mixing effects, as well as scattering-function coupling, in theoretical studies of molecular partial-channel photoionization cross sections.


Ionic State Spin Orbital Molecular Nitrogen Transition Moment Channel Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.A.R. Samson, Phys. Rept. 4, 303 (1976).ADSCrossRefGoogle Scholar
  2. 2.
    G.V. Marr, Daresbury Rept. DL/SRF/P417 (1978).Google Scholar
  3. 3.
    CE. Brion and A. Hamnett, Advan. Chem. Phys. 45,2 1981.Google Scholar
  4. 4.
    P.W. Langhoff, N. Padial, G. Csanak, T.N. Rescigno, B.V. McKoy, J. de Chimie Physique 77, 589 (1980).ADSGoogle Scholar
  5. 5.
    T.N. Rescigno, A. Gerwer, B.V. McKoy, and P.W. Langhoff, Chem. Phys. Lett. 66, 116 (1979).ADSCrossRefGoogle Scholar
  6. 6.
    Geoffry, R.J. Williams and P.W. Langhoff, Chem. Phys. Letters 78, 21 (1981).ADSCrossRefGoogle Scholar
  7. 7.
    P.W. Langhoff, S.R. Langhoff, T.N. Rescigno, J. Shirmer, L.S. Cederbaum, W. Domke, and W. von Niessen, Chem. Phys. 58, 71 (1980).CrossRefGoogle Scholar
  8. 8.
    P.A.M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).ADSMATHCrossRefGoogle Scholar
  9. 9.
    A.D. McLachlan and M.A. Ball, Rev. Mod. Phys. 36, 844 (1963).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    P.W. Langhoff, S.T. Epstein, and M. Karplus, Rev. Mod. Phys. 44, 602 (1972).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Geoffry R.J. Williams and P.W. Langhoff, Chem. Phys. Letters 60, 201 (1978).Google Scholar
  12. 12.
    L.S. Cederbaum and W. Domcke, Advan. Chem. Phys. 36, 205 (1978).CrossRefGoogle Scholar
  13. 13.
    J. Schirmer and L.S. Cederbaum, J. Phys. B11, 1889 (1978).ADSGoogle Scholar
  14. 14.
    M.F. Herman, K.F. Freed, and D.L. Yeager, Advan. Chem. Phys. 48, 1 (1981)CrossRefGoogle Scholar
  15. 15.
    J. Schirmer, L.S. Cederbaum, W. Domcke, and W. von Niessen, Chem. Phys. 26, 149 (1977).CrossRefGoogle Scholar
  16. 16.
    I.N. Levine, Quantum Chemistry (Allyn and Bacon, Boston, 1970), Vol.II.Google Scholar
  17. 17.
    D.R. Bates, Mon. Not. Roy. Astron. Soc. 106, 432 (1946).ADSGoogle Scholar
  18. 18.
    H.A. Bethe and E.E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms (Springer, Berlin, 1957).MATHCrossRefGoogle Scholar
  19. 19.
    R. Stockbauer, B.E. Cole, D.L. Ederer, J.B. West, A.C. Parr, and J.L. Dehmer, Phys. Rev. Letters 43, 757 (1979).ADSCrossRefGoogle Scholar
  20. 20.
    J.L. Dehmer, D. Dill, and S. Wallace, Phys. Rev. Letters 43, 1005 (1979).ADSCrossRefGoogle Scholar
  21. 21.
    G Raseev, H. LeRouzo, and H. Lefebvre-Brion, J. Chem. Phys. 72, 5701 (1980).ADSCrossRefGoogle Scholar
  22. 22.
    M.L. Goldberger and K.M. Watson, Collision Theory (Wiley, NY, 1964).MATHGoogle Scholar
  23. 23.
    K. Takayanagi and Y. Itikawa, Adv. At. Mol. Phys. 6, 105 (1970).ADSCrossRefGoogle Scholar
  24. 24.
    N.F. Lane, Rev. Mod. Phys. 52, 29 (1980).ADSCrossRefGoogle Scholar
  25. 25.
    I. Shavitt, “The Method of Configuration Interaction”, in: Methods of Electronic Structure Theory, ed. H. F. Schaefer III (Plenum, NY, 1977), Vol.3, Chap.6.Google Scholar
  26. 26.
    J.P. Hay and T.H. Dunning, Jr., J. Chem. Phys. 64, 5077 (1976).ADSCrossRefGoogle Scholar
  27. 27.
    K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P.F. Heden, K. Hamrin, U. Gelius, T. Bergmark, L.O. Werme, R. Manne, and Y. Bauer, ESCA Applied to Free Molecules (North-Holl and, Amsterdam, 1969).Google Scholar
  28. 28.
    D.W. Turner, C. Baker, A.D. Baker, and C.R. Brundle, Molecular Photoelectron Spectroscopy (Wiley, New York, 1970).Google Scholar
  29. 29.
    P.W. Langhoff, M. Karplus and R.P. Hurst, J. Chem. Phys. 44 505 (1966).MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    T.A. Carlson, X-ray Photoelectron Spectroscopy (Academic, New York, 1978), Part III.Google Scholar
  31. 31.
    R.L. Martin and D.A. Shirley, Phys. Rev. A13, 1475 (1976).ADSGoogle Scholar
  32. 32.
    T.H. Dunning and J.P. Hay, in Modern Theoretical Chemistry, H.F. Schaefer III, Editor (Plenum, NY, 1976), Vol.3, Chap. 1.Google Scholar
  33. 33.
    H.F. Schaefer III, The Electronic Structure of Atoms and Molecules (Addison-Wesley, reading, MA, 1972).Google Scholar
  34. 34.
    P.W. Langhoff, “The Stieltjes-Tchebycheff Approach to Molecular Photoionization Studies,” in Electron-Molecule and Photon-Molecule Collisions, T.N. Rescigno, B.V. Mc koy, and B. Schnei-der, Editors (Plenum, N.Y., 1979), pp. 183-224.Google Scholar
  35. 35.
    P.W. Langhoff, “Stieltjes-Tchebycheff Moment-Theory Approach to Photoeffect Studies in Hubert Space”, in Theory and Application of Moment Methods in Many-Fermion Systems, B.J. Dalton, S.M. Grimes, J.P. Vary, and S.A. Williams, Editors (Plenum, NY, 1980), pp. 191-212.Google Scholar
  36. 36.
    J. Geiger and B. Schroder, J. Chem. Phys. 50, 7 (1969).ADSCrossRefGoogle Scholar
  37. 37.
    R.S. Mulliken, Accounts Chem. Res. 9,7 (1976).CrossRefGoogle Scholar
  38. 38.
    R.S. Mulliken and W.C. Ermler, Diatomic Molecules (Academic, NY, 1977).Google Scholar
  39. 39.
    A. Hamnett, W. Stoll, and C.E. Brion, J. Electron Spectry. 8, 367 (1976).CrossRefGoogle Scholar
  40. 40.
    J.A.R. Samson, G.N. Haddad, and J.L. Gardner, J. Phys. B10, 1749 (1977).ADSGoogle Scholar
  41. 41.
    P.R. Woodruff and G.V. Marr, Proc. Roy. Soc. A358, 87 (1977).ADSGoogle Scholar
  42. 42.
    E.W. Plummer, T. Gustafsson, W. Gudat, and D.E. Eastman, Phys. Rev. A15, 2339 (1977).ADSGoogle Scholar
  43. 43.
    S. Krummacher, V. Schmidt, and F. Wuilleumier, J. Phys. B 13, 3993 (1980).ADSCrossRefGoogle Scholar
  44. 44.
    M.D. Frank-Kamenetskii and A. Lukashin, Soviet Phys. Usp. 18, 391 (1976).ADSCrossRefGoogle Scholar
  45. 45.
    L.S. Cederbaum and W. Domcke, J. Chem. Phys. 60, 2878 (1974); 64, 603, 612 (1976).MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    M. Cobb, T.F. Moran, R.F. Borkman, and R. Childs, J. Chem. Phys. 72, 446 (1980).CrossRefGoogle Scholar
  47. au]47.
    G.R. Wight, M.J. van der Wiel, and C.E. Brion, J. Phys. B9, 675 (1976).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • P. W. Langhoff
    • 1
    • 2
  1. 1.Department of ChemistryIndiana UniversityBloomingtonUSA
  2. 2.Max Planck Institut für Physik und AstrophysikInstitut für AstrophysikGarching bei MünchenFederal Republic of Germany

Personalised recommendations