Time and Frequency Standards

  • Pierre Cerez
Part of the NATO Advanced Science Institutes Series book series (NSSB, volume 98)


In this lecture, we shall:
  • give the principle of operation, specify the characteristics and present the most serious limitations to the performances of the most common encountered atomic frequency standards (AFS),

  • describe a few systems which are under study and which appear to be promising,

  • mention some new ideas for fundamental improvement of the performances of AFS: one possible scheme for a future high performance microwave (or optical) AFS is based on stored ions. This proposal incorporate the laser cooling and laser optical pumping technique.


Saturated Absorption Hyperfine Structure Frequency Standard Laser Cool Atomic Clock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Basic review articles

  1. •.
    C. Audoin and J. Vanier. “Review article. Atomic Frequency Standards and Clocks”. Journal of Phys. E — Scientific Instruments Vol. 9, pp. 697–720 (1976)ADSCrossRefGoogle Scholar
  2. •.
    D.J. Wineland. “Limitation on Long Term Stability and Accuracy in Atomic Clocks”. Proceedings of the PTTI, Washington D.C. (Dec. 1980)Google Scholar


  1. (1).
    Dicke R.H., Phys. Rev. 89, 472–3 (1953).ADSCrossRefGoogle Scholar
  2. (2).
    Ramsey N.F. “Molecular Beams”, Oxford, Clarendon (1956).Google Scholar
  3. (3).
    Lee P.H., Skolnick M.L., Appl. Phys. Lett. 10, 303 (1967).ADSCrossRefGoogle Scholar
  4. (4).
    Allan D.W., Proc. IEEE 54, 221–230 (1966).CrossRefGoogle Scholar
  5. (5).
    Vessot R.F.C. Proceedings of AFC (1977).Google Scholar
  6. (6).
    Kleppner D. et al, Phys. Rev. 126, 2 (1962).CrossRefGoogle Scholar
  7. (7).
    Cerez P., Hartmann F., IEEE J. of Q.E. QE-13, 5 (1977).Google Scholar
  8. (8).
    Vanier J. Third Symposium on Frequency Standards and Metrology, Aussois, France — October 1981. To be published in the Journal de Physique — special issue.Google Scholar
  9. (9).
    Beehler R.E., Glaze D.J., IEEE Trans. on Instr. and Meas. IM-15, 55–58 (1966).CrossRefGoogle Scholar
  10. (10).
    Mungall A.G. et al, Metrologia 9, 113–127 (1973).ADSCrossRefGoogle Scholar
  11. (11).
    Freed C. et al, IEEE Trans. on Instr. and Meas. IM-25, 431–437 (1976).CrossRefGoogle Scholar
  12. (12).
    Barger R.L., Hall J.L., Phys. Rev. Lett. 22, 4–8 (1969).ADSCrossRefGoogle Scholar
  13. (13).
    Hanes G.R. et al, Appl. Phys. Lett. 14, 362–364 (1969).ADSCrossRefGoogle Scholar
  14. (14).
    Cérez P., S.J. Bennett, Applied Optics, 18, 1079–1083 (1979).ADSCrossRefGoogle Scholar
  15. (15).
    Camy G. et al, Metrologia 13, 145–148 (1977).ADSCrossRefGoogle Scholar
  16. (16).
    Spieweck F., IEEE Trans. on Instr. and Meas. IM-27, 398–400 (1978).CrossRefGoogle Scholar
  17. (17).
    Cérez et al, IEEE Trans. on Instr. and Meas. IM-29, 4 (1980).Google Scholar
  18. (18).
    Evenson K.M. et al, Phys. Rev. Lett. 29, 1346–1349 (1972).ADSCrossRefGoogle Scholar
  19. (19).
    Hänsch T.W., Schawlow A.L., Opt. Com. 13, 68 (1975).ADSCrossRefGoogle Scholar
  20. (20).
    Wineland D.J., Dehmelt H.G., Bull. Am. Phys. Soc. 20, 637 (1975).Google Scholar
  21. (21).
    Crampton S.B. et al, Phys. Rev. Lett. 42, 1039 (1979).ADSCrossRefGoogle Scholar
  22. (22).
    Wineland D.J. et al, Phys. Rev. Lett. 40, 1639 (1978).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Pierre Cerez
    • 1
  1. 1.Laboratoire de l’Horloge AtomiqueUniversité Paris-SudOrsay CedexFrance

Personalised recommendations