Skip to main content

Part of the book series: NATO Advanced Science Institutes Series ((NSSB,volume 98))

  • 263 Accesses

Abstract

The theories of (special) relativity and quantum mechanics are two of the most fundamental discoveries of modern physics. Since the former is really a property of space-time which is supposed to be obeyed by all physical laws, it was obvious from the beginning that quantum mechanics (which was not relativistic in its original form) must somehow be reformulated as a relativistic theory. This goal was attained by 1929 by means of the method of field quantization. The resulting theory was called quantum electrodynamics (QED) which described the interaction of electrons and photons satisfactorily in the lowest order of perturbation theory. It had, however, an annoying feature that higher order correction terms were always divergent and ruined completely whatever agreement that existed between experiments and lowest order calculations. Because of this difficulty, which originates from the high energy region of momentum space and hence is called an ultraviolet divergence, QED was not taken seriously for nearly 20 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, for instance, J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields (McGraw-Hill, New York, 1965).

    MATH  Google Scholar 

  2. For the definition of the transverse delta function, see Ref. l, p.72.

    Google Scholar 

  3. This statement is not exactly correct for systems involving massless particles such as photons (due to infrared divergence). However, this problem can be handled within the framework described here.

    Google Scholar 

  4. Feynman diagrams with only two external electron lines are called electron self-energy diagrams. Similarly for photon self-energy diagrams, which are also called vacuum polarization diagrams.

    Google Scholar 

  5. J. Schwinger, Phys. Rev. 73, 416L (1948).

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Petermann, Helv. Phys. Acta 30, 407 (1957).

    Google Scholar 

  7. C. M. Sommerfield, Phys. Rev. 107, 328 (1957).

    Article  ADS  Google Scholar 

  8. R. Barbieri and E. Remiddi, Nucl. Phys. B90, 233 (1975)

    Article  ADS  Google Scholar 

  9. R. Barbieri, M. Caffo, and E. Remiddi, Phys. Lett. 57B, 460 (1975).

    Article  ADS  Google Scholar 

  10. M. J. Levine and R. Roskies, Phys. Rev. D9, 421 (1974)

    ADS  Google Scholar 

  11. M. J. Levine, R. C. Perisho, and R. Roskies, ibid. 13, 997 (1976).

    ADS  Google Scholar 

  12. P. Cvitanovic and T. Kinoshita, Phys. Rev. D10, 3978 (1974).

    ADS  Google Scholar 

  13. P. Cvitanovic and T. Kinoshita, Phys. Rev. D10, 3991 (1974).

    ADS  Google Scholar 

  14. P. Cvitanovic and T. Kinoshita, Phys. Rev. D10, 4007 (1974).

    ADS  Google Scholar 

  15. T. Kinoshita and W. B. Lindquist, Cornell preprint CLNS-374, 1977 (unpublished).

    Google Scholar 

  16. T. Engelmann and M. J. Levine, private communication.

    Google Scholar 

  17. M. J. Levine and R. Roskies in Proceedings of the Second International Conference on Precision Measurement and Fundamental Constants, 1981, B. N. Taylor and W. D. Phillips, eds., 1982 (to be abbreviated as PMFC-II, 1981, in the following references).

    Google Scholar 

  18. T. Kinoshita and W. B. Lindquist, Cornell preprint CLNS-512 (1981).

    Google Scholar 

  19. H. Strubbe, CERN report DD/74/5 (1974).

    Google Scholar 

  20. B. E. Lautrup in Proceedings of the Second Colloquium on Advanced Computing Methods in Theoretical Physics, Marseille, 1971, A. Visconti, ed. (Univ. of Marseille, Marseille, 1971).

    Google Scholar 

  21. G. P. Lepage, J. Comp. Phys. 27, 192 (1978)

    Article  ADS  MATH  Google Scholar 

  22. G. P. Lepage, Cornell preprint CLNS-447, 1980 (unpublished).

    Google Scholar 

  23. H. Suura and E. H. Wichmann, Phys. Rev. 105, 1930 (1957)

    Article  ADS  Google Scholar 

  24. A. Petermann, Phys. Rev. 105, 1931 (1957)

    Article  ADS  Google Scholar 

  25. H. H. Elend, Phys. Lett. 20, 682 (1966); ibid. 21, 720 (1966)

    Article  ADS  Google Scholar 

  26. G. W. Erickson and H. H. T. Liu, UCD-CNL-81 report (1968).

    Google Scholar 

  27. T. Kinoshita, J. Math. Phys. 3, 650 (1962).

    Article  ADS  MATH  Google Scholar 

  28. T. Kinoshita, Nuovo Cim. 51B, 140 (1967).

    Article  ADS  Google Scholar 

  29. B. E. Lautrup and E. de Rafael, Nucl. Phys. B70, 317 (1974).

    Article  ADS  Google Scholar 

  30. J. Aldins, S. J. Brodsky, A. Dufner and T. Kinoshita, Phys. Rev. D1, 2378 (1970).

    ADS  Google Scholar 

  31. B. E. Lautrup and M. A. Samuel, Phys. Lett. 72B, 114 (1977).

    Article  ADS  Google Scholar 

  32. J. Calmet, S. Narison, M. Perrottet and E. de Rafael, Rev. Mod. Phys. 49, 21 (1977)

    Article  ADS  Google Scholar 

  33. C. Chlouber and M. A. Samuel, Phys. Rev. D16, 3596 (1977).

    ADS  Google Scholar 

  34. G. P. Lepage, Phys. Rev. A16, 863 (1977); G. T. Bodwin and D. R. Yennie, Phys. Reports 43, 267 (1978).

    Google Scholar 

  35. D. E. Casperson, T. W. Crane, A. B. Denison, P.O. Egan, V. W. Hughes, F. G. Mariam, H. Orth, H. W. Reist, P. A. Souder, R. D. Stambaugh, P. A. Thompson, and G. zu Putlitz, Phys. Rev. Lett. 38, 956 (1977); ibid., 1504 (1977); V. W. Hughes, PMFC-II, 1981.

    Article  ADS  Google Scholar 

  36. G. P. Lepage, Atomic Physics 7, D. Kleppner and F. M. Pipkin, eds. (Plenum Press, New York, 1981), p.297.

    Google Scholar 

  37. The truncated Green’s function GT depends also on the spins of the constituents. We can define without loss of generality.

    Google Scholar 

  38. This follows since GT (á¹…) in (22) is finite at the bound state energies.

    Google Scholar 

  39. This statement needs some qualification. The expansion for V is convergent only after certain radiative corrections are removed. See D. R. Yennie, in Lectures on Strong and Electromagnetic Interactions, Brandeis Summer Institute, Vol. I (1963).

    Google Scholar 

  40. E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kinoshita, T. (1983). Quantum Electrodynamics and Its Predictions. In: Cutler, P.H., Lucas, A.A. (eds) Quantum Metrology and Fundamental Physical Constants. NATO Advanced Science Institutes Series, vol 98. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2145-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2145-1_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2147-5

  • Online ISBN: 978-1-4899-2145-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics