Skip to main content

Abstract

The calculation of the adiabatic ground state energy \( {\text{E}}\left[ {\{ \vec R_{\text{i}} \} } \right] \) of molecules, a long-standing problem in chemistry, is traditionally handled in one of two ways. Quantum chemists employ ab initio methods (meaning one or another brand of CI) which lead in principle to an exact solution of the many-electron wave-equation. Because the practical difficulties in achieving such a solution are formidable for all but the smallest systems, chemists over the years have developed empirical or semiempirical methods, such as extended-Hückel, which involves parameterization of a model Hamiltonian. These methods are not based on an attempt to solve the many-electron wave-equation, but rely on the transferability of chemical experience, i.e. the known behaviour of a given radical in a series of different environments is used to construct a model that can predict the behaviour of the same radical in a new environment. While this is an entirely legitimate scientific method giving useful results for very complex systems, it has obvious limitations. One might say that the two types of methods traditionally favoured by chemists are limited by placing either too much or too little emphasis on the many-electron wave-equation. This highlights the role that density functional methods might play in chemistry i.e. the many-electron problem is taken seriously, but not too seriously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  2. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  3. O. Gunnarsson and P. Johansson, Int. J. Quantum Chem. 10, 307 (1976).

    Article  CAS  Google Scholar 

  4. O. Gunnarsson, J. Harris, and R.O. Jones, Phys. Rev. B 15, 3027 (1977).

    Article  CAS  Google Scholar 

  5. O. Gunnarsson, J. Harris, and R.O. Jones, J. Chem. Phys. 67, 3970 (1977).

    Article  CAS  Google Scholar 

  6. O. Gunnarsson, J. Harris, and R.O. Jones, 68 1190 (1978).

    Google Scholar 

  7. O. Gunnarsson, J. Harris, and R.O. Jones, 70, 830 (1979); as well as Refs. 15 and 16.

    Google Scholar 

  8. R.O. Jones, J. Chem. Phys. 71, 1300 (1979).

    Article  CAS  Google Scholar 

  9. See, for example, W. Kohn and P.D. Vashishta, General Density Function Theory, in: “Theory of the Inhomogeneous Electron Gas”, S. Lundqvist and N.H. March, eds., Plenum Press, New York (1982).

    Google Scholar 

  10. J. Harris, Int. J. Quantum Chem. 13, 189 (1979).

    Article  CAS  Google Scholar 

  11. M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979).

    Article  CAS  Google Scholar 

  12. O. Gunnarsson and B.I. Lundqvist, Phys. Rev. B 13, 4274 (1976).

    Article  CAS  Google Scholar 

  13. O. Gunnarsson, B.I. Lundqvist, and J.W. Wilkins, Phys. Rev. B 10, 1319 (1974).

    Article  CAS  Google Scholar 

  14. J. Harris, NATO Summer School on “The Electronic Structure of Complex Systems”, W. Temmerman and P. Phariseau, eds., Plenum Press, New York (to be published).

    Google Scholar 

  15. S.H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).

    Article  CAS  Google Scholar 

  16. See, K.H. Johnson, Adv. Quantum Chem. 7, 143 (1973).

    Article  CAS  Google Scholar 

  17. J.W.D. Connolly and J.R. Sabin, J. Chem.Phys. 56, 5529 (1972).

    Article  CAS  Google Scholar 

  18. O.K. Andersen, Phys. Rev. B 12, 3060 (1975).

    Article  CAS  Google Scholar 

  19. E.J. Bae rends and P. Ros, Int. J. Quantum Chem. S 12, 169 (1978).

    CAS  Google Scholar 

  20. B.I. Dunlap, J.W.D. Connolly, and J.R. Sabin, J. Chem. Phys. 71, 3396 (1979).

    Article  CAS  Google Scholar 

  21. J. Harris and G.S. Painter, Phys. Rev. B 22, 2614 (1980).

    Article  CAS  Google Scholar 

  22. Calculational details will be presented in J.E. Müller, R.O. Jones, and J. Harris (to be published).

    Google Scholar 

  23. E.J. Baerends, D.E. Ellis, and P. Ros, Chem. Phys. 2, 41 (1973).

    Article  CAS  Google Scholar 

  24. U. von Barth and CD. Gelatt, Phys. Rev. B 21, 2222 (1980).

    Article  Google Scholar 

  25. J. Harris, R.O. Jones, and J.E. Müller, J. Chem. Phys. 75, 3904 (1981).

    Article  CAS  Google Scholar 

  26. J.C. Slater, “Quantum Theory of Molecules and Solids”, Vol. 1, McGraw Hill, New York (1963).

    Google Scholar 

  27. G. Herzberg, “Electronic Spectra of Polyatomic Molecules”, van Nostrand Reinhold, New York (1966).

    Google Scholar 

  28. D. Pines and P. Nozières, “Theory of Quantum Fluids”, Benjamin, New York (1968).

    Google Scholar 

  29. K. Kitaura, C. Satoko, and K. Morokuma, Chem. Phys. Lett. 65, 206 (1979).

    Article  CAS  Google Scholar 

  30. Quoted in “The Structure and Properties of Water” by D. Eisenberg and W. Kauzmann, Oxford University Press, London (1969).

    Google Scholar 

  31. T.H. Dunning, R.M. Pitzer, and S. Aung, J. Chem. Phys. 57, 5044 (1972).

    Article  CAS  Google Scholar 

  32. A.D. Walsh, J. Chem. Soc, 2260 (1953).

    Google Scholar 

  33. A. Rank, L.C. Allen, and E. Clementi, J. Chem. Phys. 52, 4133 (1970).

    Article  Google Scholar 

  34. J.D. Swalen and J.A. Ibers, J. Chem. Phys. 36, 1914 (1962).

    Article  Google Scholar 

  35. W.R. Rodwell and L. Radom, J. Chem. Phys. 72. 2205 (1980).

    Article  CAS  Google Scholar 

  36. U. Wahlgren, Chem. Phys. Lett. 20, 246 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harris, J., Müller, J.E. (1984). Density Functional Calculations for Atomic Clusters. In: Dahl, J.P., Avery, J. (eds) Local Density Approximations in Quantum Chemistry and Solid State Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2142-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2142-0_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2144-4

  • Online ISBN: 978-1-4899-2142-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics