Advertisement

Particle Condensates in Strongly Coupled Quantum Field Theory

  • Johann Rafelski
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 80)

Abstract

The intense study of the behaviour of electrons bound in strong external potentials [1] has stimulated interest in the study of a number of related problems in quantum field theory with the ultimate aim being now the understanding of the vacuum structure of quantum chromodynamics. My lectures describe several attempts to understand the vacuum state of strongly interacting fields.

Keywords

Vacuum State Dirac Equation Nuclear Charge Heavy Fermion Bose Condensate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Rafelski, L. P. Fulcher, and A. Klein, Phys. Reports, 38C:227 (1978).ADSCrossRefGoogle Scholar
  2. 2.
    B. Müller and J. Rafelski, Phys. Rev. Lett., 34:349 (1975).ADSCrossRefGoogle Scholar
  3. 3.
    A. Klein and J. Rafelski, Z. f. Physik, A284:71 (1978).ADSGoogle Scholar
  4. 4.
    J. Rafelski, Phys. Lett., 79B:419 (1978).ADSGoogle Scholar
  5. 5.
    B. Müller and J. Rafelski, “Self-consistent gluon screening of a strong SV(2)-source”, Phys. Rev., In print.Google Scholar
  6. 6.
    B. Müller and J. Rafelski, Phys. Lett., 101B:111 (1981) and references therein.ADSGoogle Scholar
  7. 7.
    See e.g. V. S. Weisskopf “Über die Elektrodynamik des Vakuums auf Grund der Quantenthorie des Elektrons”, reprinted in J. Schwinger, “Quantum Electrodynamics”, Dover Pubs., New York. Original published in Kongelige Danske Videnskabernes Selskab, Mathematisk-fysiske Meddeletser XIV:6 (1936).Google Scholar
  8. 8.
    P. Gärtner, B. Müller, J. Reinhardt, and W. Greiner, Phys. Lett., 95B:181 (1980); B. Müller, this conference.ADSGoogle Scholar
  9. 9.
    O. Klein, Z. f. Physik, 53:157 (1929).ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    F. Beck, H. Steinwedel, and G. Süssmann, Z. f. Physik, 171:189 (1963).ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    H. G. Dosch, J. D.H. Jensen, and V. F. Müller, Physica Norvegica, 5:151 (1971).Google Scholar
  12. 12.
    H. Snyder and J. Weinberg, Phys. Rev., 57:307 (1940).ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    A. B. Migdal, Sov. Phys. JETP 34:1189 (1972)MathSciNetADSGoogle Scholar
  14. A. B. Migdal, Zh. Eksp. Theor. Fiz. 61:2209 (1971).Google Scholar
  15. 14.
    A. Klein and J. Rafelski, Phys. Rev., D11:300 (1975).ADSGoogle Scholar
  16. 15.
    A. Klein and J. Rafelski, Phys. Rev. D12:1194 (1975).ADSGoogle Scholar
  17. 16.
    M. Bavin and J. P. Lavine, Phys. Rev., D12:1192 (1975).ADSGoogle Scholar
  18. 17.
    H. Feshbach and F. Villars, Rev. of Mod. Phys., 30:24 (1958).MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 18.
    For an introduction see the review articles: E. S. Abers and B. W. Lee, Phys. Lett., 9C:1 (1973).Google Scholar
  20. W. Marciano and H. Pagels, Phys. Lett., 36C: 137 (1978).; See also the lecture of M. Baker at this conference.Google Scholar
  21. 19.
    J. E. Mandula, Phys. Rev., D14:3497 (1976).ADSGoogle Scholar
  22. J. E. Mandula, Phys. Lett., 67B:175 (1977).ADSGoogle Scholar
  23. 20.
    A. B. Migdal, Pis’ma Zh. Eksp. Teor. Fiz. 28:37 (1978).Google Scholar
  24. A. B. Migdal, JETP Letters 28:35 (1978.ADSGoogle Scholar
  25. 21.
    M. Magg, Phys. Lett., 74B:246 (1978).ADSGoogle Scholar
  26. 22.
    P. Houston and D. Pottinger, Z. Physik, C3:83 (1979).ADSGoogle Scholar
  27. 23.
    M. Magg, Nucl. Phys. B158:154 (1979).ADSCrossRefGoogle Scholar
  28. 24.
    J. Schwinger, Phys. Rev., 82:664 (1951).MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. 25.
    W. Dittrich, Phys. Rev., Dl:3345 (1970).ADSGoogle Scholar
  30. 26.
    A. J. G. Hey, D. Horn, and J. E. Mandula, Phys, Lett., 80B:90 (1978).ADSGoogle Scholar
  31. 27.
    J. Finger, D. Horn, and J. E. Mandula, Phys. Rev., D20:3253 (1979).ADSGoogle Scholar
  32. 28.
    H. Euler and B. Kockel, Naturwiss. 23:246 (1935)ADSCrossRefGoogle Scholar
  33. H. Euler, Ann. d. Phys. V. 26:398 (1935).ADSGoogle Scholar
  34. 29.
    W. Heisenberg and H. Euler, Z. f. Physik, 38:714 (1936).ADSCrossRefGoogle Scholar
  35. 30.
    E. Iacopini and E. Zavattini, Phys. Letters, 85B:151 (1979).ADSGoogle Scholar
  36. 31.
    N. K. Nielsen and P. Olesen, Nucl. Phys. B144:376 (1978).MathSciNetADSCrossRefGoogle Scholar
  37. N. K. Nielsen and P. Olesen, Phys. Lett., 79B:304 (1978).ADSGoogle Scholar
  38. 32.
    This has been noted in a different context already G. Velo and D. Zwanziger, Phys. Rev., 186:1337 (1969)ADSCrossRefGoogle Scholar
  39. G. Velo and D. Zwanziger, Phys. Rev., 188:2218 (1969).ADSCrossRefGoogle Scholar
  40. V. Schanbacher “Gluon Propagator and Effective Lagrangian in Quantum Chromodynamics”, Tübingen preprint 1981.Google Scholar
  41. 33.
    H. B. Nielsen and P. Olesen, Nucl. Phys., B160:380 (1979).MathSciNetADSCrossRefGoogle Scholar
  42. 34.
    G. K. Savvidy, Phys. Lett., 71B:133 (1977).ADSGoogle Scholar
  43. T. A. Batalin, S. G. Matinyan, and G. K. Sawidy, Sov. J. Nucl. Phys., 26:214 (1977)Google Scholar
  44. T. A. Batalin, S. G. Matinyan, and G. K. Sawidy, Yad. Fiz. 26:407 (1977).Google Scholar
  45. 35.
    For a review see e.g. K. Johnson, Acta Phys. Polon., B6:865 (1975).Google Scholar
  46. 36.
    J. Ambørn and P. Olesen, Nucl. Phys., B170:60 (1980).ADSCrossRefGoogle Scholar
  47. 37.
    K. Johnson, private communication.Google Scholar
  48. 38.
    R. Hagedorn and J. Rafelski, Phys. Lett., 97B:136 (1980) and manuscript in preparation for Phys. Reports.ADSGoogle Scholar
  49. 39.
    B. Müller and W. Greiner, Acta Physica Austriaca, Suppl XVIII:153 (1977).Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Johann Rafelski
    • 1
  1. 1.Institut für Theoretische PhysikJohann Wolfgang Goethe-UniversitätFrankfurt am MainGermany

Personalised recommendations