Skip to main content

Laser Triggering of Gas Filled Spark Gaps

  • Chapter
Gas Discharge Closing Switches

Part of the book series: Advances in Pulsed Power Technology ((APUT,volume 2))

Abstract

The laser-triggered spark gap was first studied by Pendleton and Guenther (1965). Since that time gas dielectric, laser triggered switching (LTS) has been employed in a wide range of applications primarily requiring precise synchronization, and there has been an avalanche of publications describing the construction and performance limits of these devices. Additionally, several new types of optically-controlled switches, such as vacuum gaps, liquid and solid dielectric gaps, photoconductive semiconductor switches, and optically-controlled diffuse discharge switches, have also appeared. Although many of these new switches are interesting and, for certain applications, promise significant improvements over conventional switching technology, we limit our discussion here to gas-filled, laser triggered spark gaps only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aleksandrov, G.N., Ivanov, V.L., Kadzov, G.P., Parfenov, V.A., Pakomov, L.N., Petrun’kin, V.Y., Podlevskii, V.A., and Seleznev, Y.G., 1977, Effect of a Laser-Induced Ionization Channel in a Long Discharge in Air, Sov. Phys. Tech. Phys., 22:1233. [Russian original in Zh. Tekh. Fiz., 47:2122].

    Google Scholar 

  • Bettis, J.R., and Guenther, A.H., 1970, Subnanosecond-Jitter Laser-Triggered Switching at Moderate Repetition Rates, IEEE J. Quantum Elect., QE-6:483.

    Article  Google Scholar 

  • Black, J., and Yablonovich, E., 1977, Avalanche Initiating Electron Produced by Laser-Assisted Tunneling, IEEE J. Quantum Elect., QE-13:117.

    Article  Google Scholar 

  • Bradley, L.P., 1972, Preionization Control of Streamer Propagation, J. Appl. Phys., 43:886.

    Article  Google Scholar 

  • Braun, C., Hartmann, W., Dominic, V., Kirkman, G., and Gundersen, M.A., 1988, Fiber-Optic Triggered High Power Low Pressure Glow Discharge Switches, IEEE Trans. Electron Devices. ED-35:559.

    Article  Google Scholar 

  • Byron, K.C. and Pert, J.F., 1979, Measurement of the Wavelength Dependence of the Threshold of a Laser-Induced Gas Breakdown, J. Phys. D, 12:401.

    Article  Google Scholar 

  • Craggs, J.D., 1978, Spark Channels, in: “Electrical Breakdown of Gases,” J.M. Meek and J.D. Craggs, eds., Wiley, New York.

    Google Scholar 

  • Crumley, R.J., Williams, P.F., Gundersen, M.A., and Watson, A., 1979, Electron Densities in Laser-Triggered Discharges, in: “Digest of Technical Papers, 2nd IEEE International Pulsed Power Conference,” A.H. Guenther and M. Kristiansen eds., IEEE, New York.

    Google Scholar 

  • Cunin, B., Miehe, J.A., Sipp, B., Schelev, M.Y., Serduchenko, J.N., and Thebalt, J., 1980, Sweep Devices for Picosecond Image-Converter Streak Cameras, Rev. Sci. Inst., 51:103.

    Article  Google Scholar 

  • DeMichelis, C., 1969, Laser Induced Gas Breakdown: A Bibliographical Review, IEEE J. Quant. Elect., QE-5:188.

    Article  Google Scholar 

  • Dhali, S.K., Williams, P.F., Crumley, R.J., and Gundersen, M.A., 1980, Electron Densities in Laser-Triggered Hydrogen Sparks, IEEE Trans. Plasma Science. PS-8:164.

    Article  Google Scholar 

  • Dhali, S.K., 1984, “Space-Charge Dominated Phenomena in Electrical Breakdown of Gases,” Ph.D. Dissertation, Texas Tech University, Lubbock, TX.

    Google Scholar 

  • Dhali, S.K., and Williams, P.F., 1985, Numerical Simulation of Streamer Propagation in Nitrogen at Atmospheric Pressure, Phys. Rev. A. 31:1219.

    Article  Google Scholar 

  • Dhali, S.K., and Pal, A.K., 1988, Numerical Simulation of Streamers in SF6, J. Appl. Phys., 63:1355.

    Article  Google Scholar 

  • Dhali, S.K. and Williams, P.F., 1987, Two-Dimensional Studies of Streamers in Gases, J. Appl. Phys., 62:4696.

    Article  Google Scholar 

  • Dougal, R.A., 1983, “Breakdown Processes in Laser Triggered Switching,” Ph.D. Dissertation, Texas Tech University, Lubbock, TX.

    Google Scholar 

  • Dougal, R.A., and Williams, P.F., 1984, Fundamental Processes in Laser-Triggered Electrical Breakdown of Gases, J. Phys. D. 17:903.

    Article  Google Scholar 

  • Dougal, R.A., and Williams, P.F., 1986, Fundamental Processes in the Laser-Triggered Electrical Breakdown of Gases: Unconventional Geometries, J. Appl. Phys., 60:4240.

    Article  Google Scholar 

  • Doughty, D.K., and Lawler, J.E., 1984, Spatially Resolved Electric Field Measurements in the Cathode Fall Using Optogalvanic Detection of Rydberg Atoms, Appl. Phys. Lett., 45:611.

    Article  Google Scholar 

  • Doughty, D.K., Salih, S., and Lawler, J.E., 1984, Two-Step Opto-Galvanic Effects Using Intersecting Laser Beams: A Pinpoint Discharge Diagnostic, Phys. Lett. A. 103:41.

    Article  Google Scholar 

  • Dutton, J., 1975, A Survey of Electron Swarm Data, J. Phys. Chem. Ref. Data. 4:577.

    Article  Google Scholar 

  • Dutton, J. 1978, Spark Breakdown in Uniform Fields, in: “Electrical Breakdown of Gases,” J.M. Meek, and J.D. Craggs, eds., Wiley, New York.

    Google Scholar 

  • Endoh, A., and Watanabe, S., 1986, Laser Triggering of a 500 kV Rail-Gap Switch, J. Appl. Phys., 59:3561.

    Article  Google Scholar 

  • Evseenko, V.P., Mitsuk, V.E., Soldatova, I.V., 1979, Reduced Threshold for Optical Gas Breakdown in a Two-Frequency Field, Sov. Tech. Phys. Lett., 5:329. [Russian original in Pis’ma Zh. Tekh. Fiz., 5:801].

    Google Scholar 

  • Frost, C.A., Woodworth, J.R., Olsen, J.N., and Green, T.A., 1982, Plasma Channel Formation with Ultraviolet Lasers, Appl. Phys. Lett., 41:813.

    Article  Google Scholar 

  • Fukuoka, Y., Kawada, Y., Yoneda, Y., Hosokawa, T., and Miyoshi, Y., 1981, Breakdown Mechanism for a Laser Triggered Spark Gap in a Non-Uniform Field (III). Laser Irradiation under Negative Polarity, Elect. Eng, in Japan. 101:19. [Japanese original in: Denki Gakkai Ronbunshi. 10lA:595].

    Article  Google Scholar 

  • Ganguly, B.N., Shoemaker, J.R., Preppernau, B.L., and Garscadden, A., 1987, Rydberg State Stark Spectroscopic Measurement of Electric-Field Profile in a Glow Discharge, J. Appl. Phys., 61:2778.

    Article  Google Scholar 

  • Grey Morgan, C., 1978, Laser-Induced Breakdown Phenomena, Sci. Prog. Oxf., 65:31.

    Google Scholar 

  • Guenther, A.H. and Bettis, J.R., 1967, Laser Triggered Megavolt Switching, IEEE J. Quantum Elect., QE-3:581.

    Article  Google Scholar 

  • Guenther, A.H., Bettis, J.R., Anderson, R.E., and Wick, R.V., 1970, Low-Jitter Multigap Laser-Triggered Switching at 50 PPS, IEEE J. Quantum Elect., QE-6:492.

    Article  Google Scholar 

  • Guenther, A.H., and Bettis, J.R., 1971, A Review of Laser-Triggered Switching, Proc. IEEE. 59:689.

    Article  Google Scholar 

  • Guenther, A.H., and Bettis, J.R., 1978, The Laser Triggering of High Voltage Switches, J, Phys. P. 11:1577.

    Google Scholar 

  • Guenther, A.H., and Bettis, J.R., 1985, Recent Advances in Optically Controlled Discharges, rn “Digest of Technical Papers, 5th IEEE Pulsed Power Conference,” M.F. Rose and P.J. Turchi, eds., IEEE, New York.

    Google Scholar 

  • Guenther, A.H., and Bettis, J.R., 1987, Recent Advances in Optically Controlled Discharges, rn: “Invited Papers, Int. Conf. on Phenomena in Ionized Gases”, University of Wales, Swansea.

    Google Scholar 

  • Harjes, H.C., Schoenbach, K.H., Kristiansen, M., Guenther, A.H., and Hatfield, L.L., 1980, Laser Triggering through Fiber Optics of a Low Jitter Spark Gap, IEEE Trans. Plasma Sci., PS-8:170.

    Article  Google Scholar 

  • Harjes, H.C., Kunhardt, E.E., Kristiansen, M., Hatfield, L.L., and Guenther, A.H., 1982, Space-Charge Effects in a Laser Fiber-Optics Triggered Multichannel Spark Gap, IEEE Trans. Plasma Sci., PS-10:261.

    Article  Google Scholar 

  • Humphreys, D.R., Penn, K.J., Cap, J.S., Adams, R.G., Seamen, J.F., and Turman, B.N., 1985, Rimfire: A Six Megavolt Laser-Triggered Gas-Filled Switch for PBFA II, in: “Digest of Technical Papers, 5th IEEE Pulsed Power Conference,” M.F. Rose and P.J. Turchi, eds., IEEE, New York.

    Google Scholar 

  • Hyde, R.L., Jacoby, D., and Ramsden, S.A., 1977, A Laser-Triggered Krytron-Blumlein Electro-Optic Switch, J. Phys. E. 10:1106.

    Article  Google Scholar 

  • Itoh, Y., Kunitomo, K., Obara, M., and Fujioka, T., 1983, High-Power KrF Laser Transmission Through Optical Fibers and Its Application to the Triggering of Switches, J. Appl. Phys., 54:2956.

    Article  Google Scholar 

  • Jones, E.G., 1980, A Nitrogen-Laser-Triggered Spark Gap, S. Afr. Tydskr. Fis., 3:49.

    Google Scholar 

  • Kawada, Y., and Hosokawa, T., 1987, Breakdown Mechanism of a Laser Triggered Spark Gap in a Uniform Field Gap, J. Appl. Phys. 62:2237.

    Article  Google Scholar 

  • Kimura, W.D., Crawford, E.A., and Kushner, M.J., 1984, Investigation of Laser Preionization Triggered High Power Switches using Interferometric Techniques, in: “Conference Record of 1984 Sixteenth Power Modulator Symposium,” IEEE, New York.

    Google Scholar 

  • Kimura, W.D., Kushner, M.J., Crawford, E.A., and Byron, S.R., 1986, Laser Interferometric Measurements of a Laser Preionizaton Triggered Spark Column, IEEE Trans. Plasma Sci., PS-14:246.

    Article  Google Scholar 

  • Kimura, W.D., Kushner, M.J., and Seamans, J.F., 1988, Characteristics of a Laser Triggered Spark Gap Using Air, Ar, CH4, H2, He, N2, SF6, and Xe, J. Appl. Phys., 63:1882.

    Article  Google Scholar 

  • Kirkman, G.F., and Gundersen, M.A., 1986, Low Pressure, Light Initiated, Glow Discharge Switch for High Power Applications, Appl. Phys. Lett., 49:494.

    Article  Google Scholar 

  • Kirkman, G., Hartmann, W., and Gundersen, M.A., 1988, Flash-Lamp-Triggered High-Power Thryatron-Type Switch, Appl. Phys. Lett., 52:613.

    Article  Google Scholar 

  • Koopman, D.W., and Saum, K.A., 1973, Formation and Guiding of High-Velocity Electrical Streamers by Laser-Induced Ionization, J. Appl. Phys., 44:5328.

    Article  Google Scholar 

  • Kushner, M.J., Milroy, R.D., and Kimura, W.D., 1985a, A Laser-Triggered Spark Gap Model, J. Appl. Phys., 58:2988.

    Article  Google Scholar 

  • Kushner, M.J., Kimura, W.D., and Byron, S.R., 1985b, Arc Resistance of Laser-Triggered Spark Gaps, J. Appl. Phys., 58:1744.

    Article  Google Scholar 

  • Kushner, M.J., Kimura, W.D., Ford, D.H., and Byron, S.R., 1985c, Dual Channel Formation in a Laser-Triggered Spark Gap, J. Appl. Phys., 58:4015.

    Article  Google Scholar 

  • Lawler, J.E., Den Hartog, E.A., and Doughty, D.A., 1987, Current Balance at the Surface of a Cold Cathode, in: “Digest of Technical Papers, 6th IEEE Pulsed Power Conference,” P.J. Turchi and B.H. Bernstein, eds., IEEE, New York.

    Google Scholar 

  • Loeb, L.B., and Meek, J.M., 1940, The Mechanism of Spark Discharges in Air at Atmospheric Pressure, I, J. Appl. Phys., 11:438.

    Article  Google Scholar 

  • Marode, E., Bastien, F., and Bakker, M., 1979, A Model of the Streamer-Induced Spark Formation Based on Neutral Dynamics, J. Appl. Phys., 50:140.

    Article  Google Scholar 

  • Najafzaden, R., Bergmann, E.E., and Emrich, R.J., 1987, Schlieren and Interferometric Study of a Laser Triggered Air Spark in the Nanosecond Regime, J. Appl. Phys., 62:2261.

    Article  Google Scholar 

  • Pendleton, W.K., and Guenther, A.H., 1965, Investigation of a Laser Triggered Spark Gap, Rev. Sci. Inst., 36:1546.

    Article  Google Scholar 

  • Phelps, A.V., 1983, Transport Data for the Modeling of Electrical Breakdown and Discharges, in: “Electrical Breakdown and Discharges in Gases, Fundamental Processes and Breakdown,” E.E. Kunhardt, and L.H. Leussen, eds., Plenum, New York.

    Google Scholar 

  • Raether, H., 1939, Die Entwicklung der Elektronenlawine in den Funkenkanal, Z. Phys., 112:464.

    Article  Google Scholar 

  • Raizer, Y.P., 1977, “Laser-Induced Discharge Phenomena,” Consultants Bureau, New York.

    Google Scholar 

  • Raizer, Y.P., 1979, Optical Discharges, J. de Physique. 40:C7–141.

    Google Scholar 

  • Rapoport, W.R., Goldhar, J., and Murray, J.R., 1980, KrF Laser-Triggered SF6 Spark Gap for Low Jitter Timing, IEEE Trans. Plasma Sci., PS-8:167.

    Article  Google Scholar 

  • Scott, J.C., and Palmer, A.W., 1978a, Pressure Dependence of the Rise Time of Laser-Triggered Spark Gaps, J. Phys. E. 11:495.

    Article  Google Scholar 

  • Scott, J.C., and Palmer, A.W., 1978b, The Production of Variable-Length Subnanosecond Light Pulses in a Laser System, J. Phys. E, 11:901.

    Article  Google Scholar 

  • Taylor, R.S., Alcock, A.J., and Leopold, K.E., 1980, in: “14th Pulse Power Modulator Symposium,” IEEE, New York.

    Google Scholar 

  • Taylor, R.S. and Leopold, K.E., 1984, U.V. Radiation-Triggered Rail Gap Switches, Rev. Sci. Inst., 55:52.

    Article  Google Scholar 

  • Turman, B.N., Moore, W.B.S., Seamen, J.F., Morgan, F., Penn, J., and Humphreys, D.R., 1983, Development Tests of a 6 MV, Multistage Gas Switch for PBFA II, in: “Digest of Technical Papers, 4th IEEE Pulsed Power Conference,” T.H. Martin and M.F. Rose, eds., IEEE, New York.

    Google Scholar 

  • Turman, B.N., and Humphreys, D.R., 1987, Scaling Relations for the Rimfire Multi-Stage Gas Switch, in: “Digest of Technical Papers, 6th IEEE Pulsed Power Conference,” P.J. Turchi and B.H. Bernstein, eds., IEEE, New York.

    Google Scholar 

  • Vaill, J.R., Tidman, D.A., Wilkerson, T.D., Koopman, D.W., 1970, Propagation of High-Voltage Streamers Along Laser-Induced Ionization Trails, Appl. Phys. Letts., 17:20.

    Article  Google Scholar 

  • Walkup, R.E., Jasinski, J.M., and Dreyfus, R.W., 1986, Studies of Excimer Laser Ablation of Solids using a Michelson Interferometer, Appl. Phys. Lett., 48:1690.

    Article  Google Scholar 

  • Wilson, J.M., and Donovan, G.L., 1987, Laser-Triggered Gas Switch Improvements on PBFA-II, in: “Digest of Technical Papers, 6th IEEE Pulsed Power Conference,” P.J. Turchi and B.H. Bernstein, eds., IEEE, New York.

    Google Scholar 

  • Woodworth, J.R., Frost, C.A., and Green, T.A., 1982a, U.V. Laser Triggering of High-Voltage Gas Switches, J. Appl. Phys., 53:4734.

    Article  Google Scholar 

  • Woodworth, J.R., Adams, R.G., and Frost, C.A., 1982b, U.V.-Laser Triggering of 2.8-Megavolt Gas Switches, IEEE Trans. Plasma Sci., PS-10:257.

    Article  Google Scholar 

  • Woodworth, J.R., Hargis, P.J., Pitchford, L.C., and Hamil, R.A., 1984, Laser Triggering of a 500 kV Gas-Filled Switch: A Parametric Study, J. Appl. Phys.. 56:1382.

    Article  Google Scholar 

  • Wu, C and Kunhardt, E.E., 1988, Formation and Propagation of Streamers in N2 and N2-SF6 Mixtures, Phys. Rev. A. 37:4396.

    Article  Google Scholar 

  • Yoshida, S., Sasaki, J., Arai, Y., and Uchiyama, T., 1985, Effect of U.V. Laser Preionization on CO2-Laser-Induced Optical Breakdown, J. Appl. Phvs., 58:4003.

    Article  Google Scholar 

  • Zel’dovich, Ya. B. and Raizer, Yu. P., 1965, Cascade Ionization of a Gas by a Light Pulse, Sov. Phys. JETP. 20:772 [Russian original in Sov. Phys. JETP, 20:772].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Williams, P.F., Guenther, A.H. (1990). Laser Triggering of Gas Filled Spark Gaps. In: Schaefer, G., Kristiansen, M., Guenther, A. (eds) Gas Discharge Closing Switches. Advances in Pulsed Power Technology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2130-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2130-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2132-1

  • Online ISBN: 978-1-4899-2130-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics