Skip to main content

Studies of Fundamental Processes in Thyratrons

  • Chapter
  • 504 Accesses

Part of the book series: Advances in Pulsed Power Technology ((APUT,volume 2))

Abstract

Recently there has been a need to develop an improved basic understanding of the physical processes in high-power thyratrons. This is based on the current need for significant development in thyratron switch technology beyond the state of the art in the 1940s. In addition, understanding of fundamental processes important in thyratron operation has improved only marginally since that time. Thus, the physical theory on which switch design might be based is somewhat dated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiken, R.C., 1985, “Stiff Computation”, Oxford University Press, New York.

    MATH  Google Scholar 

  • Allis, W.P., 1956, Motions of Ions and Electrons, in Handbuch der Physik, Vol. XXI, S. Fluegge, ed., Springer, Berlin.

    Google Scholar 

  • Bates, D.R., Kingston, A.E., and McWhirter, R.W.P., 1962a, Recombination between electrons and atomic ions I: Optically thin plasmas, Proc. Roy. Soc. A267:297.

    Google Scholar 

  • Bates, D.R., Kingston, A.E, and McWhirter, R.W.P., 1962b, Recombination between electrons and atomic ions II: Optically thick plasmas, Proc. Roy. Soc., A270:155.

    Google Scholar 

  • Bekefi, G., 1976, Principles of Laser Plasmas. Wiley, New York.

    Google Scholar 

  • Bell, M.J., and Kostin, M.D., 1968, Transport coefficients and energy distributions of electrons in gases, Phys. Rev., 169:150.

    Article  Google Scholar 

  • Brannon, P.J., Gerber, R.A., and Gerardo, J.B., 1982, CO2 laser interferometer for temporally and spatially resolved electron density measurements, Rev. Sci. Inst., 53:1403.

    Article  Google Scholar 

  • Braun, C.G., 1987, Investigation of Non-equilibrium Argon and Hydrogen Plasmas, PhD Thesis, Univ. So. Calif.

    Google Scholar 

  • Braun, C.G., Erwin, D.A., and Gundersen, M.A., 1987, Fundamental processes affecting recovery in hydrogen thyratrons, Appl. Phys. Lett., 50:1325.

    Article  Google Scholar 

  • Burgess, D.D., Myerscough, V.P., Skinner, C.H., and Ward, J.M., 1980, A comparison between theory and laser spectroscopic measurements for a hydrogen plasma under high-intensity resonant Balmer irradiation, J. Phys., B13:1675.

    Google Scholar 

  • Cavalleri, G. and Sesta, G., 1968, New theory of electron drift velocity in gases, Phys. Rev., 170:286.

    Article  Google Scholar 

  • Doughty, D.K. and Lawler, J.E., 1984, Spatially-resolved electric field measurements in the cathode fall using optogalvanic detection of Rydberg atoms, Appl. Phys. Lett., 45:611.

    Article  Google Scholar 

  • Erwin, D.A., 1986, Characterization of Hydrogen Thyratron Post-tive Column Plasmas, PhD Thesis, Univ. So. Calif.

    Google Scholar 

  • Erwin D.A. and Gundersen, M.A., 1986, Measurement of excited-state densities during high-current operation of a hydrogen thyratron using laser-induced fluorescence, Appl. Phys. Lett., 48:1773.

    Article  Google Scholar 

  • Erwin, D.A., and Kunc, J.A., 1983, Rate coefficients for some collisional processes in high-current hydrogen discharges, IEEE Trans. Plasma Sci., PS-11:266.

    Article  Google Scholar 

  • Erwin, D.A., and Kunc, J.A., 1985, Electron temperature and ioni-zation degree dependence of electron transport coefficients in monatomic gases, Phys. of Fluids. 28:3349.

    Article  MATH  Google Scholar 

  • Erwin, D.A. and Kunc, J.A., 1987, Electron temperature and ioni-zation degree dependence of the electrical conductivity in diatomic gases, Phys. of Fluids. 30:919.

    Article  Google Scholar 

  • Erwin, D.A., Kunc, J.A., and Gundersen, M.A., 1986, Determination of the electric field and electron temperature in the positive column of a high-power hydrogen thyratron from non-intrusive measurements, Appl. Phys. Lett., 48:1727.

    Article  Google Scholar 

  • Fogelson, T.B., Breusove, L.N., and Vagin, L.N., 1974, Pulse Hydrogen Thyratrons. Moscow: Sov. Radio M.

    Google Scholar 

  • Fox, R.L., 1970, Effect of inelastic collisions on electron transport coefficients, Phys. of Fluids. 13:1480.

    Article  Google Scholar 

  • Ganguly, B.N. and Garscadden, A., 1985, Electric-field-vector measurement in a glow discharge, Phys. Rev. A: Rapid Comm., 32:2544.

    Article  Google Scholar 

  • Griem, H.R., 1974, Spectral Line Broadening by Plasmas. Academic Press, New York.

    Google Scholar 

  • Griem, H.R. and Lovberg, R.H., 1970, Methods of Experimental Physics. 9, part A: Plasma Physics, Academic Press, New York.

    Google Scholar 

  • Guha, S., Braun, C.G., Kunc, J.A., and Gundersen, M.A., 1984, “Thyratron operation using helium for high power and high repetition rate applications,” IEEE Trans. Electron Dev.. ED-31:992.

    Article  Google Scholar 

  • Guha, S., Cole, H. and Gundersen, M.A., 1982, A study of discharge processes in hydrogen thyratrons, IEEE Trans. Plasma Sci., PS-10:309.

    Article  Google Scholar 

  • Hinnov, E. and Hirschberg, J.G., 1962, “Electron-ion recombination in dense plasmas,” Phys. Rev., 125:795.

    Article  Google Scholar 

  • Itikawa, Y., 1974, Momentum-transfer cross sections for electron collisions with atoms and molecules, At. Data Nucl. Data Tables. Nagoya Plasma Physics Laboratory, Nagoya, Japan, 14:1.

    Article  Google Scholar 

  • Johnson, L.C., 1972, Approximations for collisional and radiative transition rates in atomic hydrogen, Astr. J., 174:227.

    Article  Google Scholar 

  • Kimura, W., Crawford, E., Kushner, M., and Byron, S., 1984, Investigation of laser preionization triggered high power switches using interferometric techniques, Lib. Congress Cat. 84-81084:54.

    Google Scholar 

  • Kunc, J.A., 1984, Stepwise ionization in a non-equilibrium, steady-state hydrogen plasma, J. Quant. Spectrosc. Radiat. Transfer. 32:311.

    Article  Google Scholar 

  • Kunc, J.A., Guha, S., and Gundersen, M.A., 1983, A fundamental theory of high power thyratrons I: The electron temperature, Lasers and Particle Beams. 1:395.

    Article  Google Scholar 

  • Kunc, J.A., and Gundersen, M.A., 1982, Plasma parameters characteristic of the hydrogen thyratron under steady-state conditions, IEEE Trans. Plasma Sci., 10:315.

    Article  Google Scholar 

  • Kunc, J.A. and Gundersen, M.A., 1983a, A fundamental theory of high power thyratrons II: The production of atomic hydrogen and positive ions, Lasers and Particle Beams. 1:407.

    Article  Google Scholar 

  • Kunc, J.A. and Gundersen, M.A. 1983b, “Scalar transport coefficients for the hydrogen plasma in the cathode-grid region of a thyratron, J. Appl. Phys., 54:2761.

    Article  Google Scholar 

  • Kunc, J.A., Shemansky, D.E., and Gundersen, M.A., 1984, A fundamental theory of high power thyratrons for high power laser and beam applications III: The production of radiation, Lasers and Particle Beams. 2:129.

    Article  Google Scholar 

  • Lee, R.W., 1979, Study of ion dynamic effects on Lyman and Balmer hydrogen lines, J. Phys., B12:1145.

    Google Scholar 

  • Lin, S.L., Robson, R.E., and Mason, E.A, 1979, Moment theory of electron drift and diffusion in neutral gases in an electrostatic field, J. Chem. Phys., 71:3483.

    Article  Google Scholar 

  • Mitchner, M. and Kruger, Jr. C., 1973, Partially Ionized Gases. Wiley, New York.

    Google Scholar 

  • Novgorodov, M.Z., Sobolev, N.N., and Shumskaya, L.I., 1980, Interferometric investigations of the plasma density in a pulsed electric discharge CO2 laser, Sov. J. Quant. Elect., 10:1355.

    Article  Google Scholar 

  • Pitchford, L.C., O’Neil, S.V., and Rumble, J.R., 1981, Extended Boltzmann analysis of electron swarm experiments, Phys. Rev., A23:294.

    Google Scholar 

  • Schott, L., 1968, in “Plasma Diagnostics”, W. Lochte-Holtgreven, ed., North-Holland, Amsterdam.

    Google Scholar 

  • Seidel, J., 1977, Effects of ion motion on hydrogen Stark profiles, Z. Naturforsch., 32A:1207.

    Google Scholar 

  • Shea, A.D. and Turnquist, D.V., 1962, Research studies for cathode and grid elements for superpower switches. Technical report, EG&G, Inc. Final Report No. B-2494.

    Google Scholar 

  • Shkarofsky, I.P., Johnston, T.W., and Bachynski, M.P., 1966, The Particle Kinetics of Plasmas, Addison-Wesley, London.

    Google Scholar 

  • Smilanski, I., Levin, L.A., and Erez, G., 1980, “Kinetics of population inversion in a copper-vapor laser using a modified hook method,” Opt. Lett., 5:93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Erwin, D.A., Braun, C.G., Kunc, J.A., Gundersen, M.A. (1990). Studies of Fundamental Processes in Thyratrons. In: Schaefer, G., Kristiansen, M., Guenther, A. (eds) Gas Discharge Closing Switches. Advances in Pulsed Power Technology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2130-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2130-7_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2132-1

  • Online ISBN: 978-1-4899-2130-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics