Advertisement

Encapsulation of Conducting Polymers within Zeolites

  • Patricia Enzel
  • Thomas Bein
Part of the NATO ASI Series book series (NSSB, volume 248)

Abstract

A great deal of current research efforts are aimed at the design and understanding of conducting and semiconducting structures at sub-micrometer dimensions. The term ‘molecular electronics’ describes the ultimate reduction of electronic circuitry to the molecular level.1 Beyond the development of concepts,2 a major challenge in this area is to create isolated, addressable molecular units that function as useful electronic components. We study the encapsulation of conducting polymers within the crystalline channel systems of zeolite hosts as a promising approach to isolated, well-defined chains of molecular conductors. The molecularsize channels of these hosts limit the dimensions of the polymer chains to molecular dimensions. The conducting polymers polypyrrole and polythiophene have previously been studied in larger scale host structures such as layered FeOCl and V2O5.3 Polypyrrole fibrils with diameters between 0.03 and 1 μm at 10 μm length have been synthesized in Nucleopore membranes.4

Keywords

Bulk Polymer Zeolite Crystal Zeolite Sample Molecular Conductor Current Research Effort 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. L. Carter, Ed. Molecular Electronic Devices II, Marcel Dekker, New York, 1987.Google Scholar
  2. 2.
    J. J. Hopfield, J. N. Onuchic, B. N. Beratan, Science 1988, 241, 817.ADSCrossRefGoogle Scholar
  3. 3(a).
    M. G. Kanatzidis, L. M. Tonge, T. J. Marks, H. O. Marcy and C. R. Kannewurf, J. Am. Chem. Soc. 1987, 109, 3797.CrossRefGoogle Scholar
  4. (b).
    M. G. Kanatzidis, M. Hubbard, L. M. Tonge, T. J. Marks, H. O. Marcy and C. R. Kannewurf, Synth. Met., 1989, 28, C89. (c) M. G. Kanatzidis, C.-G. Wu, C. R. Kannewurf and H. O. Marcy, Paper INOR134 presented at the 197th ACS National Meeting, Dallas, April 1989.CrossRefGoogle Scholar
  5. 4(a).
    R. M. Penner, C. R. Martin, J. Electrochem. Soc., 1986, 133, 2206. (b) Z. Cai, C. R. Martin, J.Am. Chem. Soc., in press.CrossRefGoogle Scholar
  6. 5.
    D. W. Breck, Zeolite Molecular Sieves, R. E. Krieger, Malabar, Fl, 1984.Google Scholar
  7. 6.
    R. Szostak, Molecular Sieves. Principles of Synthesis and Identification, Van Nostrand Reinhold, New York, 1989.Google Scholar
  8. 7.
    T. Bein and P. Enzel, Synth. Met., 1989, 29, E163.CrossRefGoogle Scholar
  9. 8.
    P. Enzel and T. Bein, J. Phys. Chem., to be published. Google Scholar
  10. 9.
    T. Bein and P. Enzel, J. Am. Chem. Soc., submitted. Google Scholar
  11. 10.
    P. Enzel and T. Bein, J. Chem. Soc., Chem. Comm., to be published. Google Scholar
  12. 11.
    A. G. MacDiarmid, J. C. Chiang, A. F. Richter, N. L. D. Somasiri, and A. J. Epstein, in Conducting Polymers, L. Alcácer, Ed., Reidel Publications, Dordrecht, The Netherlands, 1986, 105.Google Scholar
  13. 12(a).
    R. E. Myers, J. Electron. Mat., 1986, 15, 61.Google Scholar
  14. (b).
    S. P. Armes, Synth. Met., 1987, 20, 365.CrossRefGoogle Scholar
  15. (c).
    S. Rapi, V. Bocchi and G. P. Gardini, Synth. Met. 1988, 24, 217.CrossRefGoogle Scholar
  16. 13(a).
    N. Mermilliod-Thevenin and G. Bidan, Mol. Cryst. Liq. Cryst., 1985, 118, 227.CrossRefGoogle Scholar
  17. (b).
    M. B. Inoue, E. F. Velazquez and M. Inoue, Synth. Met., 1988, 24, 223.CrossRefGoogle Scholar
  18. 14(a).
    L. W. Shacklette, J. F. Wolf, S. Gould, and R. H. Baughman, J. Chem. Phys. 1988, 88, 3955.ADSCrossRefGoogle Scholar
  19. (b).
    N. S. Sariciftci, M. Bartonek, H. Kuzmany, H. Neugebauer, and A. Neckel, Synth. Met., 1989, 29, E193.CrossRefGoogle Scholar
  20. (c).
    Y. Furukawa, F. Ueda, Y. Hyodo, I. Harada, T. Nakajima, and T. Kawagoe, Macromolecules, 1988, 21, 1297.ADSCrossRefGoogle Scholar
  21. 15(a).
    K. G. Neoh, T. C. Tau, and E. T. Kang, Polymer, 1988, 29, 553.CrossRefGoogle Scholar
  22. (b).
    M. Zagorska, A. Pron, S. Lefrant, Z. Kucharski, J. Suwalski and P. Bernier, Synth. Met., 1987, 18, 43.CrossRefGoogle Scholar
  23. 16(a).
    J. E. Osterholm, P. Sunila and T. Hjertberg, Synth. Met., 1987, 18, 169.CrossRefGoogle Scholar
  24. (b).
    H. Neugebauer, G. Nauer, A. Neckel, G. Tourillon, F. Gamier and P. Lang, J. Phys. Chem., 1984, 88, 652.CrossRefGoogle Scholar
  25. 17(a).
    A. J. Epstein, and A. G. MacDiarmid, Mol. Cryst. Liq. Cryst. 1988, 160, 165.Google Scholar
  26. (b).
    S. H. Glarum and J. H. Marshall, J. Phys. Chem., 1988, 92, 4210.CrossRefGoogle Scholar
  27. 18.
    J. H. Kaufman, N. Colaneri, J. C. Scott, K. K. Kanazawa and G. B. Street, Mol. Cryst. Liq. Cryst. 1985, 118, 171.CrossRefGoogle Scholar
  28. 19(a).
    G. Dian, G. Barbey and B. Decroix, Synth. Met., 1986, 13, 281.CrossRefGoogle Scholar
  29. (b).
    N. Colaneri, M. Nowak, D. Spiegel, S. Hotta and A. J. Heeger, Phys. Rev. B, 1987, 36, 7964.ADSCrossRefGoogle Scholar
  30. 20.
    H. H. S. Javadi, R. Laversanne, A. J. Epstein, R. K. Kohli, E. M. Scherr and A. G. MacDiarmid. Synth. Met., 1989, 29, E439.CrossRefGoogle Scholar
  31. 21.
    J. C. Scott, P. Pfluger, M. T. Krounbi and G. B. Street, Phys. Rev. B, 1983, 28, 2140.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Patricia Enzel
    • 1
  • Thomas Bein
    • 1
  1. 1.Department of ChemistryUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations