Role of Electrostatics in Adhesion

  • Dan A. Hays

Abstract

The phenomenon of adhesion is the attraction of one material to another in either a gaseous or liquid medium. There are many mechanisms which can contribute to the adhesion between materials. The discussion in this chapter is limited to adhesion mechanisms due to electrostatic forces between dissimilar solid materials in a gaseous medium. The effect of electrostatic forces on adhesion is widely known and observed not only today but as early as 500 BC when the Greeks attracted pieces of straw to amber that had been charged by rubbing with another material. In spite of early observations and the ubiquitous nature of adhesion and triboelectric charging between materials, our present understanding is not satisfactory. Our understanding of electrostatic attraction is satisfactory when materials are separated. But when the materials are in intimate contact, the importance of electrostatic effects relative to other adhesion mechanisms becomes uncertain.

Keywords

Entropy Dust Sulfide Zirconium Cadmium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Moore (Ed.), Electrostatics and Its Applications, Wiley, New York (1973).Google Scholar
  2. 2.
    B. V. Deryagin [Derjaguin], N. A. Krotova, and V. P. Smilga, Adhesion of Solids, Consultants Bureau, New York (1978).CrossRefGoogle Scholar
  3. 3.
    A. J. Kinloch, Review: The science of adhesion, Part 1, Surface and interfacial aspects, J. Mater. Sci. 15, 2141–2166 (1980).CrossRefGoogle Scholar
  4. 4.
    J. N. Israelachvili and D. Tabor, The measurements of van der Waals dispersion forces in the range 1.5 to 130 nm, Proc. R. Soc. London, Ser. A 331, 19–39 (1972).CrossRefGoogle Scholar
  5. 5.
    K. L. Mittal (ed.), Surface Contamination: Genesis, Detection and Control, Vol. I and II, Plenum Press, New York (1979).Google Scholar
  6. 6.
    W. R. Smythe, Static and Dynamic Electricity, McGraw-Hill, New York (1939).Google Scholar
  7. 7.
    J. M. Crowley, Fundamentals of Applied Electrostatics, Wiley, New York (1986).Google Scholar
  8. 8.
    J. D. Jackson, Classical Electrodynamics, Wiley, New York (1962).Google Scholar
  9. 9.
    A. M. Stoneham and P. W. Tasker, Metal-nonmetal and other interfaces: the role of image interactions, J. Phys. C 18, L543–L548 (1985).CrossRefGoogle Scholar
  10. 10.
    Sticky film uses static electricity, The Japan Economic Journal (Mar. 15, 1986).Google Scholar
  11. 11.
    J. D. Cobine, Gaseous Conductors, Dover Publications, New York (1958).Google Scholar
  12. 12.
    B. V. Deryagin [Derjaguin] and V. P. Smilga, Electronic theory of adhesion, J. Appl. Phys. 38(12), 4609–4616 (1967).CrossRefGoogle Scholar
  13. 13.
    N. S. Goel and P. R. Spencer, in: Adhesion Science and Technology (L-H. Lee, ed.), Vol. 9B, pp. 763–829, Plenum Press, New York (1975).CrossRefGoogle Scholar
  14. 14.
    H. Krupp, Particle adhesion theory and experiment, Adv. Colloid Interface Sci. 1, 111–239 (1966).Google Scholar
  15. 15.
    W. R. Harper, Contact and Frictional Electrification, Oxford University Press (1967).Google Scholar
  16. 16.
    J. Lowell and A. C. Rose-Innes, Contact electrification, Adv. in Phys. 29(6), 947–1023 (1980).CrossRefGoogle Scholar
  17. 17.
    J. R. Smith, Self-consistent many-electron theory of electron work functions and surface potential characteristics for selected metals, Phys. Rev. 181(2), 522–529 (1969).CrossRefGoogle Scholar
  18. 18.
    W. R. Harper, The Volta effect as a cause of static electrification, Proc. R. Soc. London, Ser. A 205, 83–103 (1951).CrossRefGoogle Scholar
  19. 19.
    M. M. Bredov and I. Z. Kshemianskaia, The electrification observed after the contact of two bodies, Sov. Phys. Tech. Phys. 2, 844–850 (1957).Google Scholar
  20. 20.
    J. Lowell, Contact electrification of metals, J. Phys. D. 8, 53–63 (1975).CrossRefGoogle Scholar
  21. 21.
    S. M. Sze, Physics of Semiconducting Devices, Wiley, New York (1981).Google Scholar
  22. 22.
    C. B. Duke and C. Mailhiot, A microscopic model of metal-semiconductor contacts, J. Vac. Sci. Technol. B 3(4), 1170–1177 (1985).CrossRefGoogle Scholar
  23. 23.
    C. Dervos and W. S. Truscott, Physical processes for contact charge transfer, J. Electrost. 16, 137–146 (1985).CrossRefGoogle Scholar
  24. 24.
    A. D. Roberts, Surface charge contribution in rubber adhesion and friction, J. Phys. D. 10, 1801–1819 (1977).CrossRefGoogle Scholar
  25. 25.
    D. K. Davies, Charge generation on dielectric surfaces, Br. J. Appl. Phys. 2, ser. 2, 1533–1537 (1969).Google Scholar
  26. 26.
    A. R. Akande and J. Lowell, Contact electrication of polymers by metals, J. Electrost. 16, 147–156 (1985).CrossRefGoogle Scholar
  27. 27.
    T. J. Fabish, H. M. Saltsburg, and M. L. Hair, Charge transfer in metal/atactic polystyrene contacts, J. Appl. Phys. 47(3), 930–939 (1976); The distribution of localized electronic states in atactic polystyrene, J. Appl. Phys. 47, 940-948 (1976).CrossRefGoogle Scholar
  28. 28.
    G. A. Cottrell, J. Lowell, and A. C. Rose-Innes, Charge transfer in metal-polymer contacts and the validity of “contact charge spectroscopy,” J. Appl. Phys. 50(1), 374–376 (1979).CrossRefGoogle Scholar
  29. 29.
    J. Lowell, Charge accumulation by repeated contacts of metals to insulators, J. Phys. D 17, 1859–1870 (1984).CrossRefGoogle Scholar
  30. 30.
    S. Cunningham and A. Goodings, Plastic deformation and the transfer of electrostatic charge between metals and polymers during repeated-contact experiments, J. Electrost. 18, 103–108 (1986).CrossRefGoogle Scholar
  31. 31.
    H. Bauser, W. Klopffer, and H. Rabenhorst, in: Advances in Static Electricity, Vol. 1, pp. 2–9, Auxilia S.A., Burssels (1970).Google Scholar
  32. 32.
    C. B. Duke and T. J. Fabish, Charge-induced relaxation in polymers, Phys. Rev. Lett. 37, 1075–1078 (1976).CrossRefGoogle Scholar
  33. 33.
    C. B. Duke, T. J. Fabish, and A. Paton, Influence of polarization fluctuations on the electronic structure of molecular solids, Chem. Phys. Lett. 49(1), 133–136 (1977).CrossRefGoogle Scholar
  34. 34.
    C. B. Duke and T. J. Fabish, Molecular charge states and contact charge exchange in polymers, J. Appl. Phys. 48(10), 4256–4266 (1977).CrossRefGoogle Scholar
  35. 35.
    C. B. Duke, W. R. Salaneck, T. J. Fabish, J. J. Ritsko, H. R. Thomas, and A. Paton, Electronic structure of pendant-group polymers: molecular-ion states and dielectric properties of poly(2-vinyl pyridine), Phys. Rev. B 18(10), 5717–5739 (1978).CrossRefGoogle Scholar
  36. 36.
    T. J. Fabish, Electronic structure of polymers, CRC Crit. Rev. Solid State Sci. 8(4), 383–420 (1979).CrossRefGoogle Scholar
  37. 37.
    T. J. Fabish, private communication.Google Scholar
  38. 38.
    J. A. Medley, The electrostatic charging of some polymers by mercury, Br. J. Appl. Phys. 4 Suppl. 2, S28–S30 (1953).CrossRefGoogle Scholar
  39. 39.
    D. K. Donald, Contact electrification of insulators and its relevance to electrets, J. Electrochem. Soc. 115, 270–272 (1968).CrossRefGoogle Scholar
  40. 40.
    D. A. Hays, Contact electrification between mercury and polyethylene: effect of surface oxidation, J. Chem. Phys. 61, 1455–1462 (1974).CrossRefGoogle Scholar
  41. 41.
    D. A. Hays and P. K. Watson, Contact charging of polymers, in: Second International Conference on Electrophotography D. R. White, ed., pp. 108-112, Soc. Phot. Sci. Eng. (1974).Google Scholar
  42. 42.
    A. El-Kazzaz and A.C. Rose-Innes, Contact charging of insulators by liquid metals, J. Electrost. 16, 157–163 (1985).CrossRefGoogle Scholar
  43. 43.
    F. M. Fowkes, in: Materials Research Society Symposium Proceedings E. A. Giess, K.-N. Tu, and D. R. Uhlmann, eds., Vol. 40, pp. 239–250, Materials Research Society, Pittsburgh, Pennsylvania (1985).Google Scholar
  44. 44.
    F. M. Fowkes, in: Surface and Interfacial Aspects of Biomedical Polymers, J. D. Andrade, ed., Vol. 1, pp. 337–372, Plenum Press, New York (1985).CrossRefGoogle Scholar
  45. 45.
    F. Nordhage and G. Backstrom, Electrification in an electric field as a test of the theory of contact charging, Static Electrification, Inst. of Phys. Conf. Ser. No. 27, P. 84, The Institute of Physics, London and Bristol (1975).Google Scholar
  46. 46.
    D. A. Hays, The contact potential and charge exchange at a mercury-polymer interface, Static Electrification, Inst. Phys. Conf. Ser. No. 48, p. 265, The Institute of Physics, London and Bristol (1979).Google Scholar
  47. 47.
    K. P. Homewood, An experimental investigation of the depth of penetration of charge into insulators contacted by a metal, J. Phys. D. 17, 1255–1263 (1984).CrossRefGoogle Scholar
  48. 48.
    W. Possart and A. Roder, Measurement of electrical potential distribution in a polymer near the contact to a metal by means of scanning electron microscopy, Phys. Status Solidi 84, 319–325 (1984).CrossRefGoogle Scholar
  49. 49.
    J. Lowell, Tunnelling between metals and insulators and its role in contact electrification, J. Phys. D. 12, 1541–1554 (1979).CrossRefGoogle Scholar
  50. 50.
    V. A. Klyuev, E. S. Revina, V. I. Anisimova, Yu, A. Khrustalev, and Yu, P. Toporov, Light emission in breaking adhesive bonds under high vacuum, Kolloidn. Zh. 41(2), 348–351 (1979).Google Scholar
  51. 51.
    V. I. Anisimova, V. A. Klyuev, T. N. Vladykina, N. A. Krotova, Yu. P. Toporov, and B. V. Derjaguin, Parameters of x-ray radiation during breakdown of adhesive contact under vacuum, Dokl. Phys. Chem. 233(1-3), 239–242 (1977).Google Scholar
  52. 52.
    J. T. Dickinson, L. C. Jensen, and A. Jahan-Latibari, Fracto-emission: the role of charge separation, J. Vac. Sci. Technol. A 2(2), 1112–1116 (1984).CrossRefGoogle Scholar
  53. 53.
    B. V. Derjaguin and Yu. P. Toporov, Comments on “The question of emission of charged particles in failure of solids,” J. Mater. Sci. 19, 2423–2426 (1984).CrossRefGoogle Scholar
  54. 54.
    J. T. Dickinson, Reply to ‘Comments on “On the question of emission of charged particles in the case of failure of solids,”’ J. Mater. Sci. 19, 2426–2430 (1984).CrossRefGoogle Scholar
  55. 55.
    D. M. Young and A. D. Crowell, Physical Adsorption of Gases, Butterworths, Washington (1962).Google Scholar
  56. 56.
    F. C. Tompkins, in: The Solid-Gas Interface (E. A. Flood, ed.), pp. 765–786, Marcel Dekker, New York (1967).Google Scholar
  57. 57.
    P. R. Antoniewicz, Surface-induced dipole moments of adsorbed atoms, Phys. Rev. Lett. 32(25), 1424–1425 (1974).CrossRefGoogle Scholar
  58. 58.
    T. Smith, Monomolecular films on mercury, Adv. Colloid Interface Sci. 3, 161–221 (1972).CrossRefGoogle Scholar
  59. 59.
    K. W. Bewig and W. A. Zisman, Surface potentials and induced polarization in nonpolar liquids adsorbed on metals, J. Phys. Chem. 68(7), 1804–1813 (1964).CrossRefGoogle Scholar
  60. 60.
    W. Pong, D. Brandt, Z. X. He, and W. Imaino, Contact charging of insulating polymers, J. Appl. Phys. 58(2), 896–901 (1985).CrossRefGoogle Scholar
  61. 61.
    A. D. Zimon, Adhesion of Dust and Powder, Consultants Bureau, New York (1982).CrossRefGoogle Scholar
  62. 62.
    M. H. Davis, Electrostatic field and force on a dielectric sphere near a conducting plane—A note on the application of electrostatic theory to water droplets, Am. J. Phys. 37(1), 26–29 (1969).CrossRefGoogle Scholar
  63. 63.
    R. A. Bowling, An analysis of particle adhesion on semiconductor surfaces, J. Electrochem. Soc.: Solid State Science and Technology 132(9), 2208–2214 (1985).Google Scholar
  64. 64.
    D. K. Donald, in: Recent Advances in Adehsion L. H. Lee, ed., pp. 129–143, Gordon and Breach, New York (1973).Google Scholar
  65. 65.
    C. J. Mastrangelo, The effects of charge, size and shape on toner photoconductor adhesion in electrophotographic systems, Photogr. Sci. Eng. 26(4), 194–197 (1982).Google Scholar
  66. 66.
    M. H. Lee and J. Ayala, Adhesion of toner to photoconductor, J. Imaging Technol. 11(6), 279–284 (1985).Google Scholar
  67. 67.
    D. A. Hays, Electric field detachment of toner, Photogr. Sci. Eng. 22(4), 232–235 (1978).Google Scholar
  68. 68.
    M. H. Lee and A. B. Jaffe, Toner adhesion in electrophotography, to appear in Symposium Proceedings of Particles on Surfaces: Detection, Adhesion and Removal, 17th Annual Meeting of the Fine Particle Society, San Francisco (July 28-Aug. 2, 1986).Google Scholar
  69. 69.
    D. A. Hays and W. H. Wayman, Adhesion of charged particles, Static Electrification, Inst. Phys. Conf. Ser. No. 66. p. 237, The Institute of Physics, London and Bristol (1983).Google Scholar
  70. 70.
    B. Dahneke, Further measurements of the bouncing of small latex spheres, J. Colloid Interface Sci. 51(1), 58–65 (1975).CrossRefGoogle Scholar
  71. 71.
    B. Dahneke, The influence of flattening in the adhesion of particles, J. Colloid Interface Sci. 40(1), 1–13 (1972).CrossRefGoogle Scholar
  72. 72.
    B. V. Derjaguin, V. M. Muller, and Yu. P. Toporov, Effect of contact deformation on the adhesion of particles, J. Colloid Interface Sci. 53(2), 314–326 (1975).CrossRefGoogle Scholar
  73. 73.
    B. V. Derjaguin, V. M. Muller, Yu P. Toporov, and I. N. Aleinikova, The role of the pressing-on in the adhesion of elastic particles, Powder Technol. 37, 87–93 (1984).CrossRefGoogle Scholar
  74. 74.
    B. V. Derjaguin, I. N. Aleinikova, and Yu P. Toporov, On the role of electrostatic forces in the adhesion of polymer particles to solid surfaces, Powder Technol. 2, 154–158 (1968/69).CrossRefGoogle Scholar
  75. 75.
    B. V. Derjaguin, V. M. Muller, Yu P. Toporov, and N. S. Mikhovich, Influence of the contact electrification on the recoil and adhesion of particles impinging on a surface, Abstracts of Particles on Surfaces: Detection, Adhesion and Removal symposium, p. 39, 17th Annual Meeting of the Fine Particle Society, San Francisco (July 28-Aug. 2, 1986).Google Scholar
  76. 76.
    H. Krupp and W. Schnabel, Light-modulated electrostatic double layer adhesion, J. Adhes. 5, 269–277 (1973).CrossRefGoogle Scholar
  77. 77.
    B. V. Derjaguin, Yu P. Toporov, and I. N. Aleinikova, Electroadhesive properties of polymer particles in contact with the photoconductor surface, J. Colloid Interface Sci. 54(1), 59–68 (1976).CrossRefGoogle Scholar
  78. 78.
    A. E. Uber, J. F. Hoburg, and G. W. Penney, Experimental investigation of electrostatic effects in the adhesion of dry dusts, IEEE Trans. Ind. Appl IA-20(1), 148–154 (1984).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Dan A. Hays
    • 1
  1. 1.Webster Research CenterXerox CorporationWebsterUSA

Personalised recommendations