Skip to main content

Protein Breakdown and the Heat-Shock Response

  • Chapter
Book cover Ubiquitin

Abstract

A primary function of protein breakdown in animal and bacterial cells is to eliminate nonfunctional or denatured polypeptides whose accumulation in vivo could be quite toxic.1–4 Proteins with highly abnormal structures may result from nonsense mutations, insertions or deletions, missense mutations, biosynthetic errors, incorporation of amino acid analogs into proteins, or postsynthetic damage to normal cell constituents. However, such polypeptides generally fail to accumulate in vivo to the levels of normal gene products because they are rapidly degraded to amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldberg, A., and St. John, A.C., 1976, Intracellular protein degradation in mammalian and bacterial cells. Part II, Annu. Rev. Biochem. 45: 747–803.

    Article  PubMed  CAS  Google Scholar 

  2. Pine, M. J., 1966, Metabolic control of intracellular proteolysis in growing and resting cells of Escherichia coli, J. Bacteriol. 92: 847–850.

    PubMed  CAS  Google Scholar 

  3. Goldberg, A. L., 1972, Degradation of abnormal proteins in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 69: 422–426.

    Article  PubMed  CAS  Google Scholar 

  4. Goldberg, A. L., and Goff, S.A., 1986, The selective degradation of abnormal proteins in bacteria, in: Maximizing Gene Expression (W. Reznikoff and L. Gold, eds.), Butterworth Press, Stoneham, MA, pp. 287–314.

    Google Scholar 

  5. Goff, S., Casson, L. P., and Goldberg, A. L., 1984, Heat shock regulatory gene htpR influences rates of protein degradation and expression of the Ion gene in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 81: 6647–6651.

    Article  PubMed  CAS  Google Scholar 

  6. Goff, S. A., and Goldberg, A. L., 1985, Abnormal proteins stimulate expression of Ion and other heat shock genes in Escherichia coli, Cell 41: 587–595.

    Article  PubMed  CAS  Google Scholar 

  7. Neidhardt, F. C., VanBogelen, R. A., and Vaughn, V., 1984, The genetics and regulation of heat-shock proteins, Annu. Rev. Genet. 18: 295–329.

    Article  PubMed  CAS  Google Scholar 

  8. Heat-Shock: From Bacteria to Man (M. Schlesinger, M. Ashburner, and A. Tissieres, eds.), Cold Spring Harbor Press, Cold Spring Harbor, NY.

    Google Scholar 

  9. Craig, E. A., 1985, The heat shock response, Crit. Rev. Biochem. 18: 239–280.

    Article  CAS  Google Scholar 

  10. Burdon, R. H., 1986, Heat shock and the heat shock proteins, Biochem. J. 240: 313–324.

    PubMed  CAS  Google Scholar 

  11. Ananthan, J., Goldberg, A. L., and Voellmy, R., 1986, Abnormal proteins serve as eukaryotic stress signal and trigger the activation of heat shock genes, Science 232: 522–524.

    Article  PubMed  CAS  Google Scholar 

  12. Hershko, A., and Ciechanover, A., 1982, Mechanisms of intracellular protein breakdown, Annu. Rev. Biochem. 51: 335–364.

    Article  PubMed  CAS  Google Scholar 

  13. Mandelstam, J., 1958, Turnover of protein in growing and non-growing populations of Escherichia coli, Biochem. J. 69: 110–119.

    PubMed  CAS  Google Scholar 

  14. Etlinger, J., and Goldberg, A. L., 1977, A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocyte, Proc. Natl. Acad. Sci. U.S.A. 74: 54–58.

    Article  PubMed  CAS  Google Scholar 

  15. Murakami, K., Voellmy, R., and Goldberg, A. L., 1979, Protein degradation is stimulated by ATP in extracts of Escherichia coli, J. Biol. Chem. 254: 8194–8200.

    PubMed  CAS  Google Scholar 

  16. Desautels, M., and Goldberg, A. L., 1982, Liver mitochondria contain an ATP-dependent, vanadate-sensitive pathway for the degradation of proteins, Proc. Natl. Acad. Sci. U.S.A. 79: 1869–1873.

    Article  PubMed  CAS  Google Scholar 

  17. Fagan, J. M., Waxman, L., and Goldberg, A. L., 1987, Skeletal muscle and liver contain a soluble ATP + ubiquitin-dependent proteolytic system, Biochem. J. 243: 313–323.

    Google Scholar 

  18. Waxman, L., Fagan, J. M., Tanaka, K., and Goldberg, A. L., 1985, A soluble ATP-dependent system for protein degradation from murine erythroleukemia cells, J. Biol. Chem. 260: 11994–12000.

    PubMed  CAS  Google Scholar 

  19. Waxman, L., Fagan, J., and Goldberg, A., 1987, Demonstration of two distinct high molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates, J. Biol. Chem. 262: 2451–2457.

    PubMed  CAS  Google Scholar 

  20. Hough, R., Pratt, G., and Rechsteiner, M., 1986, Ubiquitin-lysozyme conjugates: Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysate, J. Biol. Chem. 261: 2400–2408.

    PubMed  CAS  Google Scholar 

  21. Goldberg, A. L., Voellmy, R., Chung, C. H., Menon, A. S., Desautels, M., Meixsell, T., and Waxman, L., 1985, The ATP dependent pathway for protein breakdown in bacteria and mitochondria, in: Intracellular Protein Catabolism, Alan R. Liss, New York, pp. 33–45.

    Google Scholar 

  22. Larimore, F., Waxman, L., and Goldberg, A. L., 1982, Studies of the ATP-dependent proteolytic enzyme, protease La, from Escherichia coli, J. Biol. Chem. 257: 4187–4195.

    PubMed  CAS  Google Scholar 

  23. Chung, C. H., and Goldberg, A. L., 1981, The product of the lon (capR) gene in Escherichia coli is the ATP-dependent protease, protease La, Proc. Natl. Acad. Sci. U.S.A. 78: 4931–4935.

    Article  PubMed  CAS  Google Scholar 

  24. Charette, M. F., Henderson, G. W., and Markovitz, A., 1981, ATP-hydrolysis-dependent protease activity of the lon (capR) protein of Escherichia coli K12, Proc. Natl. Acad. Sci. U.S.A. 78: 4728–4732.

    Article  PubMed  CAS  Google Scholar 

  25. Tanaka, K., Waxman, L., and Goldberg, A. L., 1983, ATP serves two distinct roles in protein degradation in reticulocytes, one requiring and one independent of ubiquitin, J. Cell. Biol. 96: 1580–1585.

    Article  PubMed  CAS  Google Scholar 

  26. Desautels, M., and Goldberg, A. L., 1982, Demonstration of an ATP-dependent, vanadate-sensitive endoprotease in the matrix of rat liver mitochondria, J. Biol. Chem. 257: 11673–11679.

    PubMed  CAS  Google Scholar 

  27. Goldberg, A. L., Swamy, K. H. S., Chung, C. H., and Larimore, F., 1982, Proteinases in Escherichia coli, in: Methods in Enzymology (L. Lorand, ed.), Vol. 80, Academic Press, New York, pp. 702–711.

    Google Scholar 

  28. Kowit, J., and Goldberg, A. L., 1977, Intermediate steps in the degradation of a specific abnormal protein in Escherichia coli, J. Biol. Chem. 252: 8350–8357.

    PubMed  CAS  Google Scholar 

  29. Mizusawa, S., and Gottesman, S., 1983, Protein degradation in Escherichia coli: The lon gene controls the stability of the sulA protein, Proc. Natl. Acad. Sci. U.S.A. 80: 358–362.

    Article  PubMed  CAS  Google Scholar 

  30. Gottesman, S., Gottesman, M., Shaws, J. E., and Pearson, M. L., 1981, Protein degradation in E. coli: The Ion mutation and bacteriophage lambda N and cll protein stability, Cell 24: 225–233.

    Article  PubMed  CAS  Google Scholar 

  31. Goff, S. A., and Goldberg, A. L., 1987, An increased content of protease La, the Ion gene product, increases protein degradation and blocks cell growth in Escherichia coli, J. Biol. Chem. 262: 4508–4515.

    PubMed  CAS  Google Scholar 

  32. Waxman, L., and Goldberg, A. L., 1982, Protease La from Escherichia coli hydrolyzes ATP and proteins in a linked fashion, Proc. Natl. Acad. Sci. U.S.A. 79: 4883–4887.

    Article  PubMed  CAS  Google Scholar 

  33. Waxman, L., and Goldberg, A. L., 1985, Protease La, the lon gene product, cleaves specific fluorogenic peptides in an ATP-dependent reaction, J. Biol. Chem. 260: 12022–12028.

    PubMed  CAS  Google Scholar 

  34. Goldberg, A. L., and Waxman, L., 1985, The role of ATP hydrolysis in the breakdown of proteins and peptides by protease La from Escherichia coli, J. Biol. Chem. 260: 12029–12034.

    PubMed  CAS  Google Scholar 

  35. Menon, A., Waxman, L., and Goldberg, A. L., 1987, The energy utilized in protein breakdown by the ATP-dependent protease (La) from Escherichia coli, J. Biol Chem. 262: 722–726.

    PubMed  CAS  Google Scholar 

  36. Waxman, L., and Goldberg, A., 1986, Selectivity of intracellular proteolysis: Protein substrates activate the ATP-dependent protease (La), Science 232: 500–503.

    Article  PubMed  CAS  Google Scholar 

  37. Menon, A. S., and Goldberg, A. L., 1987, Binding of nucleotides to the ATP-dependent protease La in Escherichia coli, J. Biol. Chem. 262: 14921–14928.

    PubMed  CAS  Google Scholar 

  38. Maurizi, M. R., Trisler, P., and Gottesman, S., 1985, Insertional mutagenesis of the Ion gene in Escherichia coli: lon is dispensable, J. Bacteriol. 164: 1124–1135.

    PubMed  CAS  Google Scholar 

  39. Katayama-Fujimura, Y., Gottesman, S., and Maurizi, M., 1987, A multiple-component, ATP-dependent protease from Escherichia coli, J. Biol. Chem. 262: 4477–4485.

    PubMed  CAS  Google Scholar 

  40. Hwang, B. J., Park, W. J., Chung, C. H., and Goldberg, A. L., 1987, Escherichia coli contains a soluble ATP-dependent protease (T1) distinct from protease La, Proc. Natl. Acad. Sci. U.S.A. 84: 5550–5554.

    Article  PubMed  CAS  Google Scholar 

  41. Patterson, D., and Gillespie, D., 1972, Effect of elevated temperatures on protein synthesis in Escherichia coli, J. Bacteriol. 112: 1177–1183.

    PubMed  CAS  Google Scholar 

  42. Chaloner-Larsson, G., and Yamazaki, H., 1977, Adjustment of RNA content during temperature upshift in Escherichia coli, Biochem. Biophys. Res. Commun. 82: 477–483.

    Google Scholar 

  43. Lemaux, P. G., Herendeen, S. L., Bloch, P. L., and Neidhardt, F., 1978, Transient rates of synthesis of individual polypeptides in E. coli following temperature shifts, Cell 13: 427–434.

    Article  PubMed  CAS  Google Scholar 

  44. Yamamori, T., Ito, K., Nakamura, Y., and Yura, T., 1978, Transient regulation of protein synthesis in Escherichia coli upon shift-up of growth temperature, J. Bacteriol. 134: 1133–1140.

    PubMed  CAS  Google Scholar 

  45. Herendeen, S. L., VanBogelen, R. A., and Neidhardt, F., 1979, Levels of major proteins of Escherichia coli during growth at different temperatures, J. Bacteriol. 141: 1409–1420.

    Google Scholar 

  46. Bloch, P. L., Phillips, T. A., and Neidhardt, F., 1980, Protein identifications on O’Farrell two dimensional gels: Locations of 81 Escherichia coli proteins, J. Bacteriol. 141: 1409–1420.

    PubMed  CAS  Google Scholar 

  47. Georgopoulos, G., Tilly, K., Drahos, D., and Hendrix, R., 1982; The B66.0 protein of Escherichia coli is the product of the dnaK+ gene, J. Bacteriol. 149: 1175–1177.

    PubMed  CAS  Google Scholar 

  48. Georgopoulos, C. P., Lam, B., Lundquist-Heil, A., Rudolph, C. F., Yochem, J., and Feiss, M., 1979, Identification of the E. coli dnaK(groPC756) gene product, Mol. Gen. Genet. 172: 143–149.

    Article  PubMed  CAS  Google Scholar 

  49. Neidhardt, F. C., Phillips, T. A., VanBogelen, R. A., and Smith, M. W., Georgalis, Y., and Subramanian, A. R., 1981, Identity of the B56.5 protein, the A-protein, and the groE gene product of Escherichia coli, J. Bacteriol. 145: 513–520.

    PubMed  CAS  Google Scholar 

  50. Hendrix, R. W., and Tsui, L., 1978, Role of the host in virus assembly: Cloning of the Escherichia coli groE gene and identification of its protein product, Proc. Natl. Acad. Sci. U.S.A. 75: 759–763.

    Article  Google Scholar 

  51. Georgopoulos, C. P., and Hohn, B., 1978, Identification of a host protein necessary for bacteriophage morphogenesis (the groE gene product), Proc. Natl. Acad. Sci. U.S.A. 75: 131–135.

    Article  PubMed  CAS  Google Scholar 

  52. Wada, M., and Itikawa, H., 1984, Participation of Escherichia coli K-12 groE gene products in the synthesis of cellular DNA and RNA, J. Bacteriol. 157: 694–696.

    PubMed  CAS  Google Scholar 

  53. Zylicz, M., LeBowitz, J. H., McMacken, R., and Georgopoulos, C., 1983, The dnaK protein of Escherichia coli possesses an ATPase and autophosphorylating activity and is essential in an in vitro DNA replication system, Proc. Natl. Acad. Sci. U.S.A. 80: 6431–6435.

    Article  PubMed  CAS  Google Scholar 

  54. Ang, D., Chandrasekhar, G. N., Zylicz, M., and Georgopoulos, C., 1986, Escherichia coli grpE gene codes for heat shock protein B25.3, essential for both λ DNA replication at all temperatures and host growth at high temperature, J. Bacteriol. 167: 25–29.

    PubMed  CAS  Google Scholar 

  55. Neidhardt, F. C., VanBogelen, R. A., and Lau, E. T., 1982, The high temperature regulon of Escherichia coli, in: Heat Shock: From Bacteria to Man (M. J. Schlesinger, M. Ashburner, and A. Tissieres, eds.) Cold Spring Harbor Press, Cold Spring Harbor, NY, pp. 139–145.

    Google Scholar 

  56. Bardwell, J. C. A., Tilly, K., Craig, E., King, J., Zylicz, M., and Georgopoulos, C., 1986, The nucleotide sequence of the Escherichia coli K12 dnaJ + gene, J. Biol. Chem. 261: 1782–1785.

    PubMed  CAS  Google Scholar 

  57. Taylor, W. E., Straus, D. B., Grossman, A. D., Burton, Z. F., Gross, C. A., and Burgess, R. R., 1984, Transcription from a heat-inducible promoter causes heat shock regulation of the sigma subunit of E. coli RNA polymerase, Cell 38: 371–381.

    Article  PubMed  CAS  Google Scholar 

  58. Gross, C., Cowing, D., Erickson, J., Grossman, A., Straus, D., Walter, W., and Zhou, Y.-N., 1987, Regulation of the heat-shock response in Escherichia coli, in: New Frontiers in the Study of Gene Functions (G. Poste and S. T. Crooke, eds.), Plenum Press, New York, pp. 21–32.

    Chapter  Google Scholar 

  59. Cooper, S., and Ruettinger, T., 1975, A temperature-sensitive nonsense mutation affecting the synthesis of a major protein of Escherichia coli, Mol. Gen. Genet. 139: 167–176.

    Article  PubMed  CAS  Google Scholar 

  60. Beckman, D., and Cooper, S., 1973, Temperature-sensitive nonsense mutations in essential genes of Escherichia coli, J. Bacteriol. 116: 1336–1342.

    PubMed  CAS  Google Scholar 

  61. Neidhardt, F. C., and VanBogelen, R. A., 1981, Positive regulatory gene for temperature-controlled proteins in Escherichia coli, Biochem. Biophys. Res. Commun. 100: 894–900.

    Article  PubMed  CAS  Google Scholar 

  62. Yamamori, T., and Yura, T., 1982, Genetic control of heat-shock protein synthesis and its bearing on growth and thermal resistance in Escherichia coli K12, Proc. Natl. Acad. Sci. U.S.A. 79: 860–864.

    Article  PubMed  CAS  Google Scholar 

  63. Neidhardt, F. C., VanBogelen, R. A., and Lau, E. T., 1983, Molecular cloning and expression of a gene that controls the high-temperature regulon of Escherichia coli, J. Bacteriol. 153: 597–603.

    PubMed  CAS  Google Scholar 

  64. Tobe, T., Ito, K., and Yura, T., 1984, Isolation and physical mapping of temperature-sensitive mutants defective in heat-shock induction of proteins in Escherichia coli, Mol. Gen. Genet. 195: 10–16.

    Article  PubMed  CAS  Google Scholar 

  65. Yamamori, T., and Yura, T., 1980, Temperature-induced synthesis of specific proteins in Escherichia coli: Evidence for transcriptional control, J. Bacteriol. 142: 843–851.

    PubMed  CAS  Google Scholar 

  66. Bloom, M., Skelly, S., VanBogelen, R., Neidhardt, F., Brot, N., and Weissbach, H., 1986, In vitro effect of the Escherichia coli heat shock regulatory protein on expression of heat shock genes, J. Bacteriol. 166: 380–384.

    PubMed  CAS  Google Scholar 

  67. Landick, R., Vaughn, V., Lau, E. T., VanBogelen, R. A., Erickson, J. W., and Neidhardt, F. C., 1984, Nucleotide sequence of the heat shock regulatory gene of E. coli suggests its protein product may be a transcription factor, Cell 38: 174–182.

    Article  Google Scholar 

  68. Grossman, A. D., Erickson, J. W., and Gross, C. A., 1984, The htpR gene product of E. coli is a sigma factor for heat-shock promoters, Cell 38: 383–390.

    Article  PubMed  CAS  Google Scholar 

  69. Tilly, K., McKittrick, N. M., Zylicz, M., and Georgopoulos, C., 1983, The dnaK protein modulates the heat-shock response of Escherichia coli, Cell 34: 641–646.

    Article  PubMed  CAS  Google Scholar 

  70. Phillips, T. A., VanBogelen, R. A., and Neidhardt, F. C., 1984, The lon(CapR) gene product of Escherichia coli is a heat shock protein, J. Bacteriol. 159: 283–287.

    PubMed  CAS  Google Scholar 

  71. Travers, A. A., and Mace, H. A. F., 1982, The heat-shock phenomenon in bacteria—a protection against DNA relaxation? in: Heat Shock: From Bacteria to Man (M. J. Schlesinger, M. Ashburner, and A Tissieres, eds.), Cold Spring Harbor Press, Cold Spring Harbor, NY, pp. 127–130.

    Google Scholar 

  72. So, A. G., and Davie, E. W., 1964, The effects of organic solvents on protein biosynthesis and their influence on the amino acid code, Biochemistry 3: 1165–1169.

    Article  PubMed  CAS  Google Scholar 

  73. Lapanje, S., 1978, Physical Aspects of Protein Denaturation, Wiley, New York, pp. 142–156.

    Google Scholar 

  74. Baker, T. A., Grossman, A. D., and Gross, C. A., 1984, A gene regulating the heat shock response in Escherichia coli also affects proteolysis, Proc. Natl. Acad. Sci. U.S.A. 81: 6779–6783.

    Article  PubMed  CAS  Google Scholar 

  75. Bukhari, A. I., and Zipser, D., 1973, Mutants of Escherichia coli with a defect in the degradation of nonsense fragments, Nature New Biol. 243: 238–241.

    Article  PubMed  CAS  Google Scholar 

  76. Shineberg, B., and Zipser, D., 1973, The Ion gene and degradation of β galactosidase nonsense fragments, J. Bacteriol 116: 1469–1471.

    PubMed  CAS  Google Scholar 

  77. Gottesman, S., and Zipser, D., 1978, Deg phenotype of Escherichia coli lon mutants, J. Bacteriol. 133: 844–851.

    PubMed  CAS  Google Scholar 

  78. St. John, A., and Goldberg, A. L., 1978, Effects of reduced energy production on protein degradation, guanosine tetraphosphate, and RNA synthesis in Escherichia coli, J. Biol. Chem. 253: 2705–2716.

    PubMed  CAS  Google Scholar 

  79. Lin, S., and Zabin, I., 1972, β-galactosidase: Rates of synthesis and degradation of incomplete chains, J. Biol. Chem. 247: 2205–2211.

    PubMed  CAS  Google Scholar 

  80. Mandecki, W., Powell, B. S., Mollison, K. W., Carter, G. W., and Fox, J. L., 1986, High level expression of a gene encoding the human complement factor C5a in Escherichia coli, Gene 43: 131–138.

    Article  PubMed  CAS  Google Scholar 

  81. Buell, G., Schultz, M.-F., and Selzer, G., Chollet, A., Movva, N. R., Semon, D., Escanez, S., and Kawashima, E., 1985, Optimizing the expression in E. coli of a synthetic gene encoding somatomedin-C (IGF-I), Nucleic Acids Res. 13: 1923–1938.

    Article  PubMed  CAS  Google Scholar 

  82. Pellon, J. R., Gomez, R. F., and Sinskey, A., 1982, Association of the Escherichia coli nucleoid with protein synthesized during thermal treatments, in: Heat Shock: From Bacteria to Man (M. J. Schlesinger, M. Ashburner, and A. Tissieres, eds.), Cold Spring Harbor Press, Cold Spring Harbor, NY, pp. 121–126.

    Google Scholar 

  83. Hightower, L. E., 1980, Cultured animal cells exposed to amino acid analogs or puromycin rapidly synthesize several polypeptides, J. Cell. Physiol. 102: 407–427.

    Article  PubMed  CAS  Google Scholar 

  84. Kelley, P. M., and Schlesinger, M. J., 1978, The effect of amino acid analogs and heat shock on gene expression in permissive cells, J. Cell. Physiol. 15: 1277–1286.

    CAS  Google Scholar 

  85. Roberts, J. W., and Devoret, R., 1993, in: LambdaII (R. Hendrix, J. Roberts, F. Stahl, and R. Weisberg, eds.), Cold Spring Harbor Press, Cold Spring Harbor, NY, pp. 130–133.

    Google Scholar 

  86. Torres-Cabassa, A. S., and Gottesman, S., 1987, Capsule synthesis in Escherichia coli K-12 is regulated by proteolysis, J. Bacteriol. 169: 981–989.

    PubMed  CAS  Google Scholar 

  87. Lewis, M. J., and Pelham, H. R. B., 1985, Involvement of ATP in the nuclear and nucleolar functions of the 70-kd heat shock protein, EMBO J. 4: 3137–3143.

    PubMed  CAS  Google Scholar 

  88. Munro, S., and Pelham, H. R. B., 1986, An hsp-70-like protein in the endoplasmic reticulum: Identity with the 78-kilodalton glucose-regulated protein and immunoglobulin heavy chain binding protein, Cell 46: 291–300.

    Article  PubMed  CAS  Google Scholar 

  89. Ungewickell, E., 1985, The 70-kilodalton mammalian heat shock proteins are structurally and functionally related to the uncoating protein that releases clathrin triskelia from coated vesicles, EMBO J. 4: 3385–3392.

    PubMed  CAS  Google Scholar 

  90. Chappell, T. G., Welch, B. J., Schlossman, D. M., Palter, K. B., Schlesinger, M.J., and Rothman, J. E., 1986, Uncoating ATPase is a member of the 70 kilodalton family of stress proteins, Cell 45: 3–13.

    Article  PubMed  CAS  Google Scholar 

  91. Pelham, H. R. B., 1985, Activation of heat-shock genes in eukaryotes, Trends Genet. 1: 31–35.

    Article  CAS  Google Scholar 

  92. Lindquist, S., 1981, Regulation of protein synthesis during heat shock, Nature 293: 311–314.

    Article  PubMed  CAS  Google Scholar 

  93. DiDomenico, B. J., Bugaisky, G. E., and Lindquist, S. S., 1982, Heat shock and recovery are mediated by different translational mechanisms, Proc. Natl. Acad. Sci. U.S.A. 79: 6181–6185.

    Article  PubMed  CAS  Google Scholar 

  94. DiDomenico, B. J., Bugaisky, G. E., and Lindquist, S. S., 1982, The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels, Cell 31: 593–603.

    Article  PubMed  CAS  Google Scholar 

  95. DiNocera, P. P., and Dawid, I. B., 1983, Transient expression of genes introduced into cultured cells of Drosophila, Proc. Natl. Acad. Sci. U.S.A. 80: 7095–7098.

    Article  CAS  Google Scholar 

  96. McGarry, T. J., and Lindquist, S., 1985, The preferential translation of Drosophila hsp70 mRNA requires sequences in the untranslated leader, Cell 42: 903–911.

    Article  PubMed  CAS  Google Scholar 

  97. Hultmark, D., Klemenz, R., and Gehring, W. J., 1986, Translational and transcriptional control elements in the untranslated leader of the heat-shock gene hsp22, Cell 44: 429–438.

    Article  PubMed  CAS  Google Scholar 

  98. Dreano, M., Brochot, J., Myers, A., Cheng-Meyer, C., Rungger, D., Voellmy, R., and Bromley, P., 1987, High-level heat-regulated synthesis of proteins in eukaryotic cells, Gene 49: 1–8.

    Article  Google Scholar 

  99. Voellmy, R., Ahmed, A., Schiller, P., Bromley, P., and Rungger, D., 1985, Isolation and functional analysis of a human 70,000-dalton heat shock protein gene segment, Proc. Natl. Acad. Sci. U.S.A. 82: 4949–4953.

    Article  PubMed  CAS  Google Scholar 

  100. Pelham, H. R. B., 1982, A regulatory upstream promoter element in the Drosophila hsp 70 heat-shock gene, Cell 30: 517–528.

    Article  PubMed  CAS  Google Scholar 

  101. Mirault, M.-E., Southgate, R., and Delwart, E., 1982, Regulation of heat-shock genes: A DNA sequence upstream of Drosophila hsp 70 genes is essential for their induction in monkey cells, EMBO J. 1: 1279–1285.

    PubMed  CAS  Google Scholar 

  102. Dudler, R., and Travers, A. A., 1984, Upstream elements necessary for optimal function of the hsp 70 promoter in transformed flies, Cell 38: 391–398.

    Article  PubMed  CAS  Google Scholar 

  103. Simon, J. A., Sutton, C. A., Lobell, R. B., Glaser, R., and Lis, J. T., 1985, Determinants of heat shock-induced chromosome puffing, Cell 40: 805–817.

    Article  PubMed  CAS  Google Scholar 

  104. Bienz, M., and Pelham, H. R. B., 1986, Heat shock regulatory elements function as an inducible enhancer in the Xenopus hsp70 gene and when linked to a heterologous promoter, Cell 45: 753–760.

    Article  PubMed  CAS  Google Scholar 

  105. Amin, J., Mestril, R., Schiller, P., Dreano, M., and Voellmy, R., 1987, Organization of the Drosophila melanogaster hsp70 heat shock regulation unit, Mol. Cell. Biol. 7: 1055–1062.

    PubMed  CAS  Google Scholar 

  106. Parker, C. S., and Topol, J., 1984, A Drosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp70 gene, Cell 37: 273–283.

    Article  PubMed  CAS  Google Scholar 

  107. Wu, C., 1984, Activating protein factor binds in vitro to upstream control sequences in heat shock gene chromatin, Nature 311: 81–84.

    Article  PubMed  CAS  Google Scholar 

  108. Wiederrecht, G., Shuey, D. J., Kibbe, W. A., and Parker, C. S., 1987, The Saccharomyces and Drosophila heat shock transcription factors are identical in size and DNA binding properties, Cell 48: 507–515.

    Article  PubMed  CAS  Google Scholar 

  109. Sorger, P. K., and Pelham, H. R. B., 1987, Purification and characterization of a heat shock element binding protein from yeast, EMBO J. 6: 3035–3042.

    PubMed  CAS  Google Scholar 

  110. Yost, H. J., and Lindquist, S., 1986, RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis, Cell 45: 184–193.

    Article  Google Scholar 

  111. Mirault, M.-E., Goldschmidt-Clermont, M., Moran, L., Arrigo, A. P., and Tissiéres, A., 1977, The effect of heat shock on gene expression in Drosophila melanogaster, Cold Spring Harbor Symp. Quant. Biol. 42: 819–827.

    Article  Google Scholar 

  112. Storti, R. V., Scott, M. P., Rich, A., and Pardue, M. L., 1980, Translational control of protein synthesis in response to heat-shock in D. melanogaster cells, Cell 22: 825–834.

    Article  PubMed  CAS  Google Scholar 

  113. Krüger, C., and Benecke, B.-J., 1981, In vitro translation of Drosophila heat-shock and non-heat-shock mRNAs in heterologous and homologous cell-free systems, Cell 23: 595–603.

    Article  PubMed  Google Scholar 

  114. Scott, M. P., and Pardue, M. L., 1981, Translational control in lysates of Drosophila melanogaster cells, Proc. Natl. Acad. Sci. U.S.A. 78: 3353–3357.

    Article  PubMed  CAS  Google Scholar 

  115. Lawson, R., Mestril, R., Schiller, P., and Voellmy, R., 1984, Expression of heat shock-α-galactosidase hybrid genes, Mol. Gen. Genet. 198: 116–124.

    Article  PubMed  CAS  Google Scholar 

  116. Subjeck, J. R., and Shyy, T.-T., 1986, Stress protein systems of mammalian cells, Am. J. Physiol. 250: C1–C17.

    PubMed  CAS  Google Scholar 

  117. Bond, U., and Schlesinger, M. J., 1985, Ubiquitin is a heat shock protein in chicken embryo fibroblasts, Mol. Cell. Biol. 5: 949–956.

    PubMed  CAS  Google Scholar 

  118. Bond, U., and Schlesinger, M. J., 1986, The chicken ubiquitin gene contains a heat shock promoter and expresses an unstable mRNA in heat-shocked cells, Mol. Cell. Biol. 6: 4602–4610.

    PubMed  CAS  Google Scholar 

  119. Hershko, A., Eytan, E., Ciechanover, A., and Haas, A. L., 1982, Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells, J. Biol. Chem. 257: 13964–13970.

    PubMed  CAS  Google Scholar 

  120. Ciechanover, A., Finley, D., and Varshavsky, A., 1984, The ubiquitin-mediated proteolytic pathway and mechanisms of energy-dependent intracellular protein degradation, J. Cell. Biochem. 24: 27–53.

    Article  PubMed  CAS  Google Scholar 

  121. Parag, H. A., Raboy, B., and Kulka, R. G., 1987, Effect of heat shock on protein degradation in mammalian cells: Involvement of the ubiquitin system, EMBO J. 6: 55–61.

    PubMed  CAS  Google Scholar 

  122. Carlson, N., Rogers, S., and Rechsteiner, M., 1987, Microinjection of ubiquitin: Changes in protein degradation in HeLa cells subjected to heat-shock, J. Cell Biol. 104: 547–555.

    Article  PubMed  CAS  Google Scholar 

  123. Ozkaynak, E., Finley, D., Solomon, M. J., and Varshavsky, A., 1987, The yeast ubiquitin genes: A family of natural gene fusions, EMBO J. 6: 1429–1439.

    PubMed  CAS  Google Scholar 

  124. Finley, D., Ozkaynak, E., and Varshavsky, A., 1987, The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation and other stresses, Cell 48: 1035–1046.

    Article  PubMed  CAS  Google Scholar 

  125. Mason, P. J., Hall, L. M. C., and Gausz, J., 1984, The expression of heat shock genes during normal development in Drosophila melanogaster, Mol. Gen. Genet. 194: 73–78.

    Article  CAS  Google Scholar 

  126. Gasc, J.-M., Renoir, J.-M., Radanyi, C., Joab, I., Tuohimaa, P., and Baulieu, E.-E., 1984, Progesterone receptor in the chick oviduct: An immunohistochemical study with antibodies to distinct receptor components, J. Cell Biol. 99: 1193–1201.

    Article  PubMed  CAS  Google Scholar 

  127. Catelli, M. G., Binart, N., Jung-Testas, I., Renoir, J. M., Baulieu, E.-E., Feramisco, J. R., and Welch, W. J., 1985, The common 90-kd protein component of non-transformed “8S” steroid receptors is a heat-shock protein, EMBO J. 4: 3131–3135.

    PubMed  CAS  Google Scholar 

  128. Brugge, J. S., 1985, Interaction of the Rous sarcoma virus protein pp60src with the cellular proteins pp50 and pp90, in: Current Topics in Microbiology and Immunology (P. D. Vogt, ed.), Vol. 123, Springer-Verlag, Berlin, pp. 1–22.

    Google Scholar 

  129. Welch, W. J., Garrels, J. I., Thomas, G. P., Lin, J. J. C., and Feramisco, J. R., 1983, Biochemical characterization of the mammalian stress proteins and identification of two stress proteins as glucose and calcium ionophore-regulated proteins, J. Biol. Chem. 258: 7102–7111.

    PubMed  CAS  Google Scholar 

  130. Sorger, P., and Pelham, H. R. B., 1987, The 94,000 dalton glucose-regulated protein is related to the 90,000 dalton heat shock protein, J. Mol. Biol. 194: 341–344.

    Article  PubMed  CAS  Google Scholar 

  131. Welch, W. J., and Feramisco, J. R., 1984, Nuclear and nucleolar localization of the 72,000-dalton heat shock protein in heat-shock mammalian cells, J. Biol. Chem. 259: 4501–4513.

    PubMed  CAS  Google Scholar 

  132. Vincent, M., and Tanguay, R. M., 1979, Heat-shock induced proteins present in the cell nucleus of Chironomus tentans salivary gland, Nature 281: 501–503.

    Article  PubMed  CAS  Google Scholar 

  133. Arrigo, A.-P., Fakan, St., and Tissieres, A., 1980, Localization of the heat-shockinduced proteins in Drosophila melanogaster tissue culture cells, Dev. Biol. 78: 86–103.

    Article  PubMed  CAS  Google Scholar 

  134. Velazquez, J. M., DiDomenico, B. J., and Lindquist, S., 1980, Intracellular localization of heat shock proteins in Drosophila, Cell 20: 679–689.

    Article  PubMed  CAS  Google Scholar 

  135. Levinger, L., and Varshavsky, A., 1981, Heat-shock proteins of Drosophila are associated with nuclease-resistant high-salt resistant nuclear structures, J. Cell Biol. 90: 793–796.

    Article  PubMed  CAS  Google Scholar 

  136. Sinibaldi, R. M., and Morris, P. W., 1981, Putative function of Drosophila melanogaster heat shock proteins in the nucleoskeleton, J. Biol. Chem. 256: 10735–10738.

    PubMed  CAS  Google Scholar 

  137. Arrigo, A.-P., and Ahmad-Zadeh, C., 1981, Immunofluorescence localization of a small heat shock protein (hsp 23) in salivary gland cells of Drosophila melanogaster, Mol. Gen. Genet. 184: 73–79.

    Article  PubMed  CAS  Google Scholar 

  138. Welch, W. J., and Suhan, J. P., 1986, Cellular and biochemical events in mammalian cells during and after recovery from physiological stress, J. Cell Biol. 103: 2035–2052.

    Article  PubMed  CAS  Google Scholar 

  139. Pelham, H. R. B., 1984, Hsp70 accelerates the recovery of nucleolar morphology after heat shock, EMBO J. 3: 3095–3100.

    PubMed  CAS  Google Scholar 

  140. Pelham, H. R. B., 1986, Speculations on the functions of the major heat shock and glucose-regulated proteins, Cell 46: 959–961.

    Article  PubMed  CAS  Google Scholar 

  141. Schlossman, D. M., Schmid, S. L., Braell, W. A., and Rothman, J. E., 1984, An enzyme that removes clathrin coats: Purification of an uncoating ATPase, J. Cell Biol. 99: 723–733.

    Article  PubMed  CAS  Google Scholar 

  142. Morrison, S. L., and Scharff, M. D., 1975, Heavy chain-producing variants of a mouse myeloma cell line, J. Immunol. 114: 655–659.

    PubMed  CAS  Google Scholar 

  143. Haas, I. G., and Wabl, M., 1983, Immunoglobulin heavy chain binding protein, Nature 306: 387–389.

    Article  PubMed  CAS  Google Scholar 

  144. Bole, D. G., Hendershot, L. M., and Kearney, J. F., 1986, Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas, J. Cell Biol. 102: 1558–1566.

    Article  PubMed  CAS  Google Scholar 

  145. Welch, W. J., and Feramisco, J. R., 1985, Rapid purification of mammalian 79,000-dalton stress proteins: Affinity of the proteins for nucleotides, Mol. Cell. Biol. 5: 1229–1237.

    PubMed  CAS  Google Scholar 

  146. Welch, W. J., 1985, Phorbol ester, calcium ionophore, or serum added to quiescent rat embryo fibroblast cells are result in the elevated phosphorylation of two 28,000-dalton mammalian stress proteins, J. Biol. Chem. 260: 3058–3062.

    PubMed  CAS  Google Scholar 

  147. Hickey, E., Brandon, S. E., Potter, R., Stein, G., Stein, J., and Weber, L. A., 1986, Sequence and organization of genes encoding the human 27 kDa heat shock protein, Nucleic Acids Res. 14: 4127–4145.

    Article  PubMed  CAS  Google Scholar 

  148. Ingolia, T. D., and Craig, E. A., 1982, Four small Drosophila heat shock proteins are related to each other and to mammalian α-crystallin, Proc. Natl. Acad. Sci. U.S.A. 79: 2360–2364.

    Article  PubMed  CAS  Google Scholar 

  149. Southgate, R., Ayme, A., and Voellmy, R., 1983, Nucleotide sequence analysis of the Drosophila small heat shock gene cluster at locus 67B, J. Mol. Biol. 165: 35–57.

    Article  PubMed  CAS  Google Scholar 

  150. Arrigo, A.-P., Darlix, J.-L., Khandjian, E. W., Simon, M., and Spahr, P.-F., 1985, Characterization of the prosome from Drosophila and its similarity to the cytoplasmic structures formed by the low molecular weight heat-shock proteins, EMBO J. 4: 399–406.

    PubMed  CAS  Google Scholar 

  151. Arrigo, A. P., Tanaka, K., Goldberg, A. L., and Welch, W. J., 1988, Identity of the 19S “prosome” particle with the large multifunctional protease complex of mammalian cells (the proteasome), Nature 331: 192–194.

    Article  PubMed  CAS  Google Scholar 

  152. Finley, D., Ciechanover, A., and Varshavsky, A., 1984, Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85, Cell 37: 43–55.

    Article  PubMed  CAS  Google Scholar 

  153. Ciechanover, A., Finley, D., and Varshavsky, A., 1984, Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85, Cell 37: 57–66.

    Article  PubMed  CAS  Google Scholar 

  154. Hiromi, Y., and Hotta, Y., 1985, Actin gene mutations in Drosophila; heat shock activation in the indirect flight muscles, EMBO J. 4: 1681–1687.

    PubMed  CAS  Google Scholar 

  155. Okamoto, H., Hiromi, Y., Ishikawa, E., Yamada, T., Isoda, K., Maekawa, H., and Hotta, Y., 1986, Molecular characterization of mutant actin gene which induce heat-shock proteins in Drosophila flight muscles, EMBO J. 5: 589–596.

    PubMed  CAS  Google Scholar 

  156. Hiromi, Y., Okamoto, H., Gehring, W. J., and Hotta, Y., 1986, Germline transformation with Drosophila melanogaster mutant actin genes induces constitutive expression of heat shock genes, Cell 44: 293–301.

    Article  PubMed  CAS  Google Scholar 

  157. Voellmy, R., and Rungger, D., 1982, Transcription of a Drosophila heat shock gene is heat-induced in Xenopus oocytes, Proc. Natl. Acad. Sci. U.S.A. 79: 1776–1780.

    Article  PubMed  CAS  Google Scholar 

  158. Munro, S., and Pelham, H. R. B., 1984, Use of peptide tagging to detect proteins expressed from cloned genes: Deletion mapping functional domains of Drosophila hsp70, EMBO J. 3: 3087–3093.

    PubMed  CAS  Google Scholar 

  159. Munro, S., and Pelham, H. R. B., 1985, What turns on heat shock genes? Nature 317: 477–478.

    Article  PubMed  CAS  Google Scholar 

  160. Neidhardt, F. C., and VanBogelen, R. A., 1987, Heat-shock response, in: Escherichia coli and Salmonella typhimurium (F. C. Neidhardt, ed.), American Society for Microbiology, Washington, D.C., pp. 1334–1345.

    Google Scholar 

  161. VanBogelen, R. A., Kelly, G. M., and Neidhardt, F. C., 1987, Differential induction of heat shock, SDS, and oxidative stress regulons and accumulation of nucleotides in Escherichia coli, J. Bacteriol. 169: 26–32.

    PubMed  CAS  Google Scholar 

  162. Chin, D. T., Goff, S. A., Webster, T., Smith, T., and Goldberg, A. L., 1988, DNA sequence of the lon gene in Escherichia coli: A Heat-shock gene which encodes the ATP-dependent protease La, J. Biol. Chem. (in press).

    Google Scholar 

  163. Menon, A. S., and Goldberg, A. L., 1987, Protein substrates activate the ATP-dependent protease La by promoting nucleotide binding and release of bound ADP, J. Biol. Chem. 262: 14929–14934.

    PubMed  CAS  Google Scholar 

  164. Straus, D. B., Walter, W. A., and Gross, C. A., 1987, The heat shock response of E. coli is regulated by changes in the concentration of σ32, Nature 329: 348–351.

    Article  PubMed  CAS  Google Scholar 

  165. Prouty, W. F., and Goldberg, A. L., 1972, Fate of abnormal proteins in E. coli: Accumulation in intracellular granules before catabolism, Nature New Biol. 240: 147–150.

    Article  PubMed  CAS  Google Scholar 

  166. Prouty, W. F., Karnovsky, M. J., and Goldberg, A. L., 1975, Degradation of abnormal proteins in Escherichia coli: Formation of protein inclusions in cells exposed to amino acid analogs, J. Biol. Chem. 250: 1112–1122.

    PubMed  CAS  Google Scholar 

  167. Klemes, Y., Etlinger, J. D., and Goldberg, A. L., 1981, Properties of proteins degraded rapidly in reticulocytes: Intracellular aggregation of the globin molecules prior to hydrolysis, J. Biol. Chem. 256: 8436–8444.

    PubMed  CAS  Google Scholar 

  168. Goldenberg, C., Luo, Y., Fenna, M., Baler, R., and Voellmy, R., 1987, Purified human factor, HHTF, activates a heat-shock promoter in a Hela cell-free transcription system (in press).

    Google Scholar 

  169. Wu, C., Wilson, S., Walker, B., Dawid, I., Paisley, T., Zimarino, V., and Ueda, H., 1987, Purification and properites of Drosophila heat shock activator protein, Nature 238: 1247–1253.

    CAS  Google Scholar 

  170. Grossman, A. D., Straus, D. B., Walter, W. A., and Gross, C. A., 1987, σ32 synthesis can regulate the synthesis of heat shock proteins in Escherichia coli, Genes Dev. 1: 179–184.

    Article  PubMed  CAS  Google Scholar 

  171. Bahl, H., Echols, H., Straus, D. B., Court, D., Crowl, R., and Georgopoulos, C. P., 1987, Induction of the heat shock response of E. coli through stabilization of σ32 by the phage cIII protein, Genes Dev. 1: 57–64.

    Article  PubMed  CAS  Google Scholar 

  172. Drahos, D. J., and Hendrix, R. W., 1982, Effect of bacteriophage lambda infection on synthesis of groE protein and other Escherichia coli proteins, J. Bacteriol. 149: 1050–1063.

    PubMed  CAS  Google Scholar 

  173. Kochan, J., and Muriaido, H., 1982, Stimulation of groE synthesis in Escherichia coli by bacteriophage lambda infection, J. Bacteriol. 149: 1166–1170.

    PubMed  CAS  Google Scholar 

  174. Winter, R. B., and Gold, L., 1984, The maturation (A2) protein from the RNA bacteriophage Qβ induces the synthesis of some E. coli heat-shock proteins, Cold Spring Harbor 1984 Bacteriophage Meeting, Cold Spring Harbor, NY (Abstr.).

    Google Scholar 

  175. Krueger, J. H., and Walker, G. C., 1984, groEL and dnaK genes of Escherichia coli are induced by UV irradiation and nalidixic acid in the htpR +-dependent fashion, Proc. Natl. Acad. Sci. U.S.A. 81: 1499–1503.

    Article  PubMed  CAS  Google Scholar 

  176. Christman, M. F., Morgan, R. W., Jacobson, F. S., and Ames, B. N., 1985, Positive control of a regulon for defenses against oxidation stress and some heat-shock proteins in Salmonella typhimurium, Cell 41: 753–762.

    Article  PubMed  CAS  Google Scholar 

  177. VanBogelen, R. A., Kelley, P. M., and Neidhardt, F. C., 1987, Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli, J. Bacteriol. 169: 26–32.

    PubMed  CAS  Google Scholar 

  178. Gross, C. A., Grossman, A. D., Liebke, H., Walter, W., and Burgess, R. R., 1984, Effects of the mutant σ(rpoD800) on the synthesis of specific macromolecular components of the Escherichia coli K12 cell, J. Mol. Biol. 172: 283–300.

    Article  PubMed  CAS  Google Scholar 

  179. Grossman, A. D., Taylor, W. E., Burton, Z. F., Burgess, R. R., and Gross, C. A., 1985, Stringent response in Escherichia coli induces expression of heat shock proteins, J. Mol. Biol. 186: 357–365.

    Article  PubMed  CAS  Google Scholar 

  180. Levinson, W., Oppermann, H., and Jackson, J., 1980, Transition series metals and sulfhydryl reagents induce the synthesis of four proteins in eukaryotic cells, Biochim. Biophys. Acta 606: 170–180.

    Article  PubMed  CAS  Google Scholar 

  181. Courgeon, A.-M., Maisonhaute, C., and Best-Belpomme, M., 1984, Heat shock proteins are induced by cadmium in Drosophila cells, Exp. Cell Res. 153: 515–521.

    Article  PubMed  CAS  Google Scholar 

  182. Johnston, D., Oppermann, H., Jackson, J., and Levinson, W., 1980, Induction of four proteins in chick embryo cells by sodium arsenite, J. Biol. Chem. 255: 6975–6980.

    PubMed  CAS  Google Scholar 

  183. Ashburner, M., and Bonner, J. J., 1979, The induction of gene activity in Drosophila by heat shock, Cell 17: 241–254.

    Article  PubMed  CAS  Google Scholar 

  184. Li, G. C., Shreve, D. C., and Werb, Z., 1982, Correlation between synthesis of heat shock proteins and development of tolerance to heat and to adriamysin in Chinese hamster fibroblasts: Heat shock and other inducers, in: Heat Shock: From Bacteria to Man (M. J. Schlesinger, M. Ashburner, and A. Tissieres, eds.), Cold Spring Harbor Press, Cold Spring Harbor, NY, pp. 395–404.

    Google Scholar 

  185. Rensing, L., 1973, Effects of 2,4-dinitrophenol and dinactin of heat-sensitive and eckysone-specific puffs of Drosophila salivary gland chromosomes in vitro, Cell Diff. 2: 221–228.

    Article  CAS  Google Scholar 

  186. Khandjian, E. W., and Turler, H., 1983, Simian virus 40 and polyoma virus induce synthesis of heat shock proteins in permissive cells, Mol. Cell Biol. 3: 1–8.

    PubMed  CAS  Google Scholar 

  187. Wu, B. J., Hirst, H. C., Jones, N. C., and Morimoto, R. I., 1986, The Ela 13S product of adenovirus type 5 activates transcription of the cellular human hsp70 gene, Mol. Cell Biol. 6: 2994–2999.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goff, S.A., Voellmy, R., Goldberg, A.L. (1988). Protein Breakdown and the Heat-Shock Response. In: Rechsteiner, M. (eds) Ubiquitin. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2049-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2049-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2051-5

  • Online ISBN: 978-1-4899-2049-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics