Skip to main content

Ubiquitin Carboxyl-Terminal Hydrolases

  • Chapter
Ubiquitin

Abstract

There are a number of known ubiquitin (Ub) derivatives for which hydrolase activities are required to regenerate a functional Ub molecule. For example, removal of ubiquitin from ubiquitinated histones is extensive during metaphase and during periods of altered gene expression. One may expect that Ub, which is a very old protein in evolutionary terms, may be involved in post-translational modifications of other proteins, and hydrolases, possibly with allosteric control features, will be needed to control the degree of modification. Moreover, judging from the gene and mRNA structures that have been reported, some translated forms of Ub will consist of tandem repeats. This calls for Ub-specific peptidases in contrast to the hydrolases introduced above. In fact, fusion proteins involving Ub are rapidly hydrolyzed in yeast. In addition, a variety of conjugates of Ub can arise by reactions of Ub thiol esters of E1 and E2 with the simple thiols and amines that occur in cells. Hydrolysis is the only known way to repair these apparent mistakes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

E1:

ubiquitin activating enzyme

E2:

ubiquitin transfer protein

E3:

E2-protein ubiquitin transferase

Ub:

ubiquitin

Ubal:

ubiquitin C-terminal aldehyde

DTT:

dithiothreitol

References

  1. Seale, R., 1981, Rapid turnover of the histone-ubiquitin conjugate protein A24, Nucleic Acids Res. 9: 3151–3158.

    Article  PubMed  CAS  Google Scholar 

  2. Wu, R. S., Kohn, K. W., and Bonner, W. M., 1981, Metabolism of ubiquitinated histones, J. Biol. Chem. 256: 5916–5920.

    PubMed  CAS  Google Scholar 

  3. Atidia, J., and Kulka, R. G., 1982, Formation of conjugates of 125I-labeled ubiquitin microinjected into cultured hepatoma cells, FEBS Lett. 142: 72–76.

    Article  PubMed  CAS  Google Scholar 

  4. Matsumoto, Y.-I., Yasuda, H., Marunouchi, T., and Yamada, M. A., 1983, Decrease in μH2A (protein A24) of a mouse temperature sensitive mutant, FEBS Lett. 151: 139–142.

    Article  PubMed  CAS  Google Scholar 

  5. Matsui, S.-I., Sandberg, A. A., Negoro, S., Seon, B.-K., and Goldstein, G., 1982, Isopeptidase: A novel eukaryotic enzyme that cleaves isopeptide bonds, Proc. Natl. Acad. Sci. U.S.A. 79: 1535–1539.

    Article  PubMed  CAS  Google Scholar 

  6. Mueller, R. D., Yasuda, H., Hatch, C. L., Bonner, W. M., and Bradbury, E. M., 1985, Identification of ubiquitinated H2A and H2B in Physarum polycephalum: Disappearance of these proteins at metaphase and reappearance at anaphase, J. Biol. Chem. 260: 5147–5153.

    PubMed  CAS  Google Scholar 

  7. Mita, S., Yasuda, H., Marunouchi, T., Ishiko, S., and Yamada, M., 1980, A temperature-sensitive mutant of cultured mouse cells defective in chromosome condensation, Exp. Cell Res. 126: 407–416.

    Article  PubMed  CAS  Google Scholar 

  8. Anderson, M. W., Ballal, N. R., Goldknopf, I. L., and Busch, H., 1981, Protein A24 lyase activity in nucleoli of thioacetamide-treated rat liver reduces histone 2A and ubiquitin from conjugated protein A24, Biochemistry 20: 1100–1104.

    Article  Google Scholar 

  9. Haas, A. L., Murphy, K. E., and Bright, P. M., 1985, The inactivation of ubiquitin accounts for the inability to demonstrate ATP-dependent proteolysis in liver extracts, J. Biol. Chem. 260: 4694–4703.

    PubMed  CAS  Google Scholar 

  10. Anderson, M. W., Goldknopf, I. L., and Busch, H., 1981, Protein A24 lyase is an isopeptidase, FEBS Lett. 132: 210–214.

    Article  Google Scholar 

  11. Hershko, A., Ciechanover, A., Heller, H., Haas, A. L., and Rose, I. A., 1980, Proposed role of ATP in protein breakdown: Conjugation of proteins with multiple chains of the polypeptide of ATP-dependent proteolysis, Proc. Natl. Acad. Sci. U.S.A. 77: 1783–1786.

    Article  PubMed  CAS  Google Scholar 

  12. Haas, A. L., and Rose, I. A., 1981, Hemin inhibits ATP-dependent ubiquitin-dependent proteolysis: Role of hemin in regulating ubiquitin conjugate degradation, Proc. Natl. Acad. Sci. U.S.A. 78: 6845–6848.

    Article  PubMed  CAS  Google Scholar 

  13. Ciechanover, A., Heller, H., Etzion-Katz, R., and Hershko, A., 1981, Activation of the heat-stable polypeptide of the ATP dependent proteolytic system, Proc. Natl. Acad. Sci. U.S.A. 78: 761–765.

    Article  PubMed  CAS  Google Scholar 

  14. Rose, I. A., and Warms, J. V. B., 1987, A specific endpoint assay for ubiquitin, Proc. Natl. Acad. Sci. U.S.A. 84: 1477–1481.

    Article  PubMed  CAS  Google Scholar 

  15. Wilkinson, K. D., Cox, M. J., Mayer, A. N., and Frey, T., 1986, Synthesis and characterization of ubiquitin ethyl ester, a new substrate for ubiquitin carboxyl-terminal hydrolase, Biochemistry 25: 6644–6649.

    Article  PubMed  CAS  Google Scholar 

  16. Kanda, F., Matsui, S.-L., Sykes, D. E., and Sandberg, A. A., 1984, Affinity of chromatin structures for isopeptidase, Biochem. Biophys. Res. Commun. 122: 1296–1306.

    Article  PubMed  CAS  Google Scholar 

  17. Pickart, C. M., and Rose, I. A., 1986, Mechanism of ubiquitin carboxyl-terminal hydrolase, J. Biol. Chem. 261: 10210–10217.

    PubMed  CAS  Google Scholar 

  18. Rose, I. A., and Warms, J. V. B., 1983, An enzyme with ubiquitin carboxy-terminal esterase activity from reticulocytes, Biochemistry 22: 4234–4237.

    Article  PubMed  CAS  Google Scholar 

  19. Pickart, C. M., and Rose, I. A., 1985, Ubiquitin carboxyl-terminal hydrolase acts on ubiquitin carboxyl-terminal amides, J. Biol. Chem. 261: 7903–7910.

    Google Scholar 

  20. Pickart, C. M., and Rose, I. A., 1985, Functional heterogeneity of ubiquitin carrier proteins, J. Biol. Chem. 260: 1573–1581.

    PubMed  CAS  Google Scholar 

  21. Hershko, A., Leshinsky, E., Ganoth, D., and Heller, H., 1984, ATP-dependent degradation of ubiquitin-protein conjugates, Proc. Natl. Acad. Sci. U.S.A. 81: 1619–1623.

    Article  PubMed  CAS  Google Scholar 

  22. Hough, R., and Rechsteiner, M., 1986, Ubiquitin-lysozyme conjugates: Purification and susceptibility to proteolysis, J. Biol. Chem. 261: 2391–2399.

    PubMed  CAS  Google Scholar 

  23. Hunter, A. J., and Cary, P. D., 1985, Preparation of chromosomal protein A24 (μH2a) by denaturing gel filtration and preparation of its free nonhistone component ubiquitin by ion-exchange chromatography, Anal. Biochem. 150: 394–402.

    Article  PubMed  CAS  Google Scholar 

  24. Hough, R., Pratt, G., and Rechsteiner, M., 1986, Ubiquitin-lysozyme conjugates: Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates, J. Biol Chem. 261: 2400–2408.

    PubMed  CAS  Google Scholar 

  25. Kanda, F., Sykes, D. E., Yasuda, H., Sandberg, A. A., and Matsui, S.-I., 1986, Substrate recognition of isopeptidase: Specific cleavage of the ε-(α-glycyl) lysine linkage in ubiquitin-protein conjugates, Biochim. Biophys. Acta 870: 64–75.

    Article  PubMed  CAS  Google Scholar 

  26. Goldknopf, I. L., Cheng, S., Anderson, M. W., and Busch, H., 1981, Loss of endogenous nuclear protein A24 lyase activity during chicken erythropoiesis, Biochem. Biophys. Res. Commun. 100: 1464–1470.

    Article  PubMed  CAS  Google Scholar 

  27. Goldknopf, I. L., Wilson, G., Ballal, N. R., and Busch, H., 1980, Chromatin conjugates protein A24 is cleaved and ubiquitin is lost during chicken embryo erythropoiesis, J. Biol. Chem. 255: 10555–10558.

    PubMed  CAS  Google Scholar 

  28. Wu, R. S., Kohn, K. W., and Bonner, W. M., 1981, Metabolism of ubiquitinated histones, J. Biol. Chem. 256: 5916–5920.

    PubMed  CAS  Google Scholar 

  29. Hershko, A., and Rose, I.A., 1987, Ubiquitin-aldehyde: A general inhibitor of ubiquitin-recycling processes, Proc. Nail. Acad. Sci. U.S.A. 84: 1829–1833.

    Article  CAS  Google Scholar 

  30. Wilkinson, K. D., and Mayer, A. N., 1986, Alcohol-induced conformational changes of ubiquitin, Arch. Biochem. Biophys. 250: 390–399.

    Article  PubMed  CAS  Google Scholar 

  31. Cox, M. J., Haas, A. L., and Wilkinson, K. D., 1986, Role of ubiquitin conformations in the specificity of protein degradation: Iodinated derivatives with altered conformation and activities, Arch. Biochem. Biophys. 250: 400–409.

    Article  PubMed  CAS  Google Scholar 

  32. Ciechanover, A., Heller, H., Elias, S., Haas, A. L., and Hershko, A., 1980, ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation, Proc. Natl. Acad. Sci. U.S.A. 77: 1365–1368.

    Article  PubMed  CAS  Google Scholar 

  33. Bachmair, A., Finley, D., and Varshavsky, A., 1986, In vivo half-life of a protein is a function of its amino-terminal residue, Science 234: 179–186.

    Article  PubMed  CAS  Google Scholar 

  34. Hershko, A., and Heller, H., 1985, Occurrence of a polyubiquitin structure in ubiquitin-protein conjugates, Biochem. Biophys. Res. Commun. 128: 1079–1086.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rose, I.A. (1988). Ubiquitin Carboxyl-Terminal Hydrolases. In: Rechsteiner, M. (eds) Ubiquitin. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2049-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2049-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2051-5

  • Online ISBN: 978-1-4899-2049-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics