Ubiquitin pp 5-38 | Cite as

Purification and Structural Properties of Ubiquitin

  • Keith D. Wilkinson

Abstract

This chapter discusses the purification and characteristics of ubiquitin (Ub),1 the highly conserved and widely distributed peptide that participates in a variety of cellular functions. As this book makes clear, Ub has a role in protein degradation,2–4 chromatin structure,5–7 the heat-shock response,8,9 cell surface receptors,10–12 and perhaps even immunological response.13 The one unifying theme in all these functions is the formation of an amide bond between the carboxyl terminus of Ub and amino groups of a variety of proteins. Thus, Ub can be thought of as a marker molecule that targets proteins for any of a variety of metabolic fates. One of the critical unanswered questions about its mode of action involves the definition of how Ub contributes to the partition of various Ub-protein conjugates between these metabolic fates.

Keywords

Amide Aldehyde Carboxyl Lysine Arginine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schlesinger, D. H., Goldstein, G., and Niall, H. D., 1975, The complete amino acid sequence of ubiquitin, an adenylate cyclase stimulating polypeptide probably universal in living cells, Biochemistry 14: 2214–2218.PubMedCrossRefGoogle Scholar
  2. 2.
    Ciechanover, A., Elias, S., Heller, H., Ferber, S., and Hershko, A., 1980, Characterization of the heat-stable polypeptide of the ATP-dependent proteolytic system from reticulocytes, J. Biol. Chem. 255: 7525–7528.PubMedGoogle Scholar
  3. 3.
    Wilkinson, K. D., Urban, M. K., and Haas, A. L., 1980, Ubiquitin in the ATP-dependent proteolysis factor I of rabbit reticulocytes, J. Biol. Chem. 255: 7529–7532.PubMedGoogle Scholar
  4. 4.
    Wilkinson, K. D., and Audhya, T. K., 1981, Stimulation of ATP-dependent proteolysis requires ubiquitin with the COOH-terminal sequence Arg-Gly-Gly, J. Biol. Chem. 256: 9235–9241.PubMedGoogle Scholar
  5. 5.
    Matsui, S., Seon, B. K., and Sandberg, A. A., 1979, Disappearance of a structural chromatin protein A24 in mitosis: Implications for molecular basis of chromatin condensation, Proc. Natl. Acad. Sci. U.S.A. 76: 6386–6390.PubMedCrossRefGoogle Scholar
  6. 6.
    Levinger, L., and Varshavsky, A., 1982, Selective arrangement of ubiquitinated and Dl protein-containing nucleosomes within the Drosophila genome, Cell 28: 375–385.PubMedCrossRefGoogle Scholar
  7. 7.
    Mueller, R. D., Yasuda, H., Hatch, C. L., Bonner, W. M., and Bradbury, E. M., 1985, Identification of ubiquitinated histones 2A and 2B in Physarum polycephalum, J. Biol. Chem. 260: 5147–5153.PubMedGoogle Scholar
  8. 8.
    Finley, D., Ciechanover, A., and Varshavsky, A., 1984, Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85, Cell 37: 43–55.PubMedCrossRefGoogle Scholar
  9. 9.
    Bond, U., and Schlesinger, M. J., 1985, Ubiquitin is a heat shock protein in chicken embryo fibroblasts, Mol. Cell. Biol. 5: 949–956.PubMedGoogle Scholar
  10. 10.
    Siegelman, M., Bond, M. W., Gallatin, W. M., St. John, T., Smith, H. T., Fried, V. A., and Weissman, I. L., 1986, Cell surface molecule associated with lymphocyte homing is a ubiquitinated branched-chain glycoprotein, Science 231: 823–829.PubMedCrossRefGoogle Scholar
  11. 11.
    Yarden, Y., Escobedo, J. A., Kuang, W.-J., Yang-Feng, T. L., Daniel, T. O., Tremble, P. M., Chen, E. Y., Ando, M. E., Harkins, R. N., Francke, U., Fried, V. A., Ullrich, A., and Williams, L. T., 1986, Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors, Nature 323: 226–232.PubMedCrossRefGoogle Scholar
  12. 12.
    Meyer, E. M., West, C. M., and Chau, V., 1986, Antibodies directed against ubiquitin inhibit high affinity [3H]choline uptake in rat cerebral cortical synaptosomes, J. Biol. Chem. 261: 14365–14368.PubMedGoogle Scholar
  13. 13.
    Scheid, M. P., Goldstein, G., and Boyse, E. A., 1978, The generation and regulation of lymphocyte populations, J. Exp. Med. 147: 1727–1743.PubMedCrossRefGoogle Scholar
  14. 14.
    Haas, A. L., Murphy, K. E., and Bright, P. M., 1985, The inactivation of ubiquitin accounts for the inability to demonstrate ATP-dependent proteolysis in liver extracts, J. Biol. Chem. 260: 4694–4703.PubMedGoogle Scholar
  15. 15.
    Hershko, A., Eytan, E., Ciechanover, A., and Haas, A. L., 1982, Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells, J. Biol. Chem. 257: 13964–13970.PubMedGoogle Scholar
  16. 16.
    Haas, A. L., and Bright, P. M., 1985, The immunochemical detection and quantitation of intracellular ubiquitin-protein conjugates, J. Biol. Chem. 260: 12464–12473.PubMedGoogle Scholar
  17. 17.
    Ciechanover, A., Elias, S., Heller, H., and Hershko, A., 1982, “Covalent-affinity” purification of ubiquitin-activating enzyme, J. Biol. Chem. 257: 2537–2542.PubMedGoogle Scholar
  18. 18.
    Haas, A. L., and Rose, I. A., 1982, The mechanism of ubiquitin activating enzyme, J. Biol. Chem. 257: 10329–10337.PubMedGoogle Scholar
  19. 19.
    Rose, I. A., and Warms, J. V. B., 1987, A specific endpoint assay for ubiquitin, Proc. Natl. Acad. Sci. U.S.A. 84: 1477–1481.PubMedCrossRefGoogle Scholar
  20. 20.
    Ciechanover, A., Hod, Y., and Hershko, A., 1978, A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes, Biochem. Biophys. Res. Commun. 81: 1100–1104.CrossRefGoogle Scholar
  21. 21.
    Evans, A. C., Jr., and Wilkinson, K. D., 1985, Ubiquitin-dependent proteolysis of native and alkylated bovine serum albumin: Effects of protein structure and ATP concentration on selectivity, Biochemistry 24: 2915–2923.PubMedCrossRefGoogle Scholar
  22. 22.
    Wilkinson, K. D., Cox, M. J., O’Connor, L. B., and Shapira, R., 1986, Structure and activities of a variant ubiquitin sequence from Bakers’ yeast, Biochemistry 25: 4999–5004.PubMedCrossRefGoogle Scholar
  23. 23.
    Jabusch, J. R., and Deutsch, H. F., 1983, Isolation and crystallization of ubiquitin from mature erythrocytes, Prep. Biochem. 13: 261–273.PubMedCrossRefGoogle Scholar
  24. 24.
    Haas, A. L., and Wilkinson, K. D., 1985, The large scale purification of ubiquitin from human erythrocytes, Prep. Biochem. 15: 49–60.PubMedCrossRefGoogle Scholar
  25. 25.
    Goldstein, G., Scheid, M., Hammerling, U., Boyse, E. A., Schlesinger, D. H., and Niall, H. D., 1975, Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells, Proc. Natl. Acad. Sci. U.S.A. 72: 11–15.PubMedCrossRefGoogle Scholar
  26. 26.
    Loir, M., Caraty, A., Lanneau, M., Menezy, Y., Muh, J. P., and Sautiere, P., 1984, Purification and characterization of ubiquitin from mammalian testis, FEBS Lett. 169: 199–204.PubMedCrossRefGoogle Scholar
  27. 27.
    Seidah, N. G., Crine, P., Benjannet, S., Scherrer, H., and Chretien, M., 1978, Isolation and partial characterization of a biosynthetic N-terminal methionyl peptide of bovine pars intermedia: Relationship to ubiquitin, Biochem. Biophys. Res. Commun. 80: 600–608.PubMedCrossRefGoogle Scholar
  28. 28.
    Hamilton, J. W., and Rouse, J. B., 1980, The biosynthesis of ubiquitin by parathyroid gland, Biochem. Biophys. Res. Commun. 96: 114–120.PubMedCrossRefGoogle Scholar
  29. 29.
    Scherrer, H., Seidah, N. G., Benjannet, S., Crine, P., Lis, M., and Chretian, M., 1978, Biosynthesis of a ubiquitin-related peptide in rat brain and in human and mouse pituitary tumors, Biochem. Biophys. Res. Commun. 84: 874–885.PubMedCrossRefGoogle Scholar
  30. 30.
    Watson, D. C., Levy-Wilson, B., Gordon, W., and Dixon, G. H., 1978, Free ubiquitin is a non-histone protein of trout testis chromatin, Nature 276: 196–198.PubMedCrossRefGoogle Scholar
  31. 31.
    Gavilanes, J. G., de Buitrago, G. G., Perez-Castells, R., and Rodriguez, R., 1982, Isolation, characterization and amino acid sequence of a ubiquitin-like protein from insect eggs, J. Biol. Chem. 257: 10267–10270.PubMedGoogle Scholar
  32. 32.
    Levenbrook, L., Bauer, A. C., and Chou, J. Y., 1986, Ubiquitin in the blowfly Calliphora vicina, Insect Biochem. 16: 509–515.CrossRefGoogle Scholar
  33. 33.
    Dworkin-Rastl, E., Shrutkowski, A., and Dworkin, M. B., 1984, Multiple ubiquitin mRNAs during Xenopus laevis development contain tandem repeats of the 76 amino acid coding sequence, Cell 39: 321–325.PubMedCrossRefGoogle Scholar
  34. 34.
    Levy-Wilson, B., Denker, M. S., and Ito, E., 1983, Isolation, characterization, and postsynthetic modifications of Tetrahymena high mobility group proteins, Biochemistry 22: 1715–1721.PubMedCrossRefGoogle Scholar
  35. 35.
    Fusauchi, Y., and Iwai, K., 1985, Tetrahymena ubiquitin-histone conjugate uH2A. Isolation and structural analysis, J. Biochem. 97: 1467–1476.PubMedGoogle Scholar
  36. 36.
    Vierstra, R. D., Langan, S. M., and Haas, A. L., 1985, Purification and initial characterization of ubiquitin from the higher plant, Avena sativa, J. Biol. Chem. 260: 12015–12021.Google Scholar
  37. 37.
    Vierstra, R. D., Langan, S. M., and Schaller, G. E., 1986, Complete amino acid sequence of ubiquitin from the higher plant Avena sativa, Biochemistry 25: 3105–3108.CrossRefGoogle Scholar
  38. 38.
    Ozkaynak, E., Finley, D., and Varshavsky, A., 1984, The yeast ubiquitin gene: Head-to-tail repeats encoding a polyubiquitin precursor protein, Nature 312: 663–666.PubMedCrossRefGoogle Scholar
  39. 39.
    Low, T. L. K., Thurman, G. B., McAdoo, M., McClure, J., Rossio, J. L., Naylor, P. H., and Goldstein, A. L., 1979, The chemistry and biology of thymosin, J. Biol. Chem. 254: 981–986.PubMedGoogle Scholar
  40. 40.
    Cary, P. D., King, D. S., Crane-Robinson, C., Bradbury, M., Rabbani, A., Goodwin, G. H., and Johns, E. W., 1980, Structural studies on two high-mobility-group proteins from calf thymus, HMG-14 and HMG-20 (ubiquitin), and their interaction with DNA, Eur. J. Biochem. 112: 557–580.Google Scholar
  41. 41.
    Lenkinski, R. E., Chen, D. M., Glickson, J. D., and Goldstein, G., 1977, Nuclear magnetic resonance studies of the denaturation of ubiquitin, Biochim. Biophys. Acta 494: 126–130.PubMedCrossRefGoogle Scholar
  42. 42.
    Jenson, J., Goldstein, G., and Breslow, E., 1980, Physical-chemical properties of ubiquitin, Biochim. Biophys. Acta 624: 378–385.PubMedCrossRefGoogle Scholar
  43. 43.
    Wilkinson, K. D., and Mayer, A. N., 1986, Alcohol-induced conformational changes of ubiquitin, Arch. Biochem. Biophys. 250: 390–399.PubMedCrossRefGoogle Scholar
  44. 44.
    Breslow, E., Chauhan, Y., Daniel, R., and Tate, S., 1986, Role of methionine-1 in ubiquitin conformation and activity, Biochem. Biophys. Res. Commun. 138: 437–444.PubMedCrossRefGoogle Scholar
  45. 45.
    Cox, M. J., Haas, A. L., and Wilkinson, K. D., 1986, Role of ubiquitin conformations in the specificity of protein degradation: Iodinated derivatives with altered conformations and activities, Arch. Biochem. Biophys. 250: 400–409.PubMedCrossRefGoogle Scholar
  46. 46.
    Lund, P. K., Moats-Staats, B. M., Simmons, J. G., Hoyt, E., D’Ercole, A. J., Martin, F., and Van Wyk, J. J., 1985, Nucleotide sequence analysis of a cDNA encoding human ubiquitin reveals that ubiquitin is synthesized as a precursor, J. Biol. Chem. 260: 7609–7613.PubMedGoogle Scholar
  47. 47.
    Wiborg, O., Pedersen, M. S., Wind, A., Berglund, L. E., Marcker, K. A., and Vuust, J., 1985, The human multigene family: Some genes contain multiple directly repeated ubiquitin coding sequences, EMBO J. 4: 755–759.PubMedGoogle Scholar
  48. 48.
    Vijay-Kumar, S., Bugg, C. E., Wilkinson, K. D., and Cook, W. J., 1985, Three-dimensional structure of ubiquitin at 2.8 Å resolution, Proc. Natl. Acad. Sci. U.S.A. 82: 3582–3585.PubMedCrossRefGoogle Scholar
  49. 49.
    Vijay-Kumar, S., Bugg, C. E., and Cook, W. J., 1987, Structure of ubiquitin refined at 1.8 Å resolution, J. Mol. Biol. 194: 531–544.PubMedCrossRefGoogle Scholar
  50. 50.
    Vijay-Kumar, S., Bugg, C. E., Wilkinson, K. D., Vierstra, R. D., and Cook, W. J., 1987, Comparison of three-dimensional structures of yeast and oat ubiquitin with human ubiquitin, J. Biol. Chem. 262: 6396–6399.PubMedGoogle Scholar
  51. 51.
    Cox, M. J., Shapira, R., and Wilkinson, K. D., 1986, Tryptic peptide mapping of ubiquitin and derivatives using reverse-phase high performance liquid chromatography, Anal. Biochem. 154: 345–352.PubMedCrossRefGoogle Scholar
  52. 52.
    Low, T. L. K., and Goldstein, A. L., 1979, The chemistry and biology of thymosin, J. Biol. Chem. 254: 987–995.PubMedGoogle Scholar
  53. 53.
    Mezquita, Z., Chiva, M., Vidal, S., and Mezquita, C., 1982, Effects of high mobility group nonhistone proteins HMG-20 (ubiquitin) and HMG-17 on histone deacetylase activity assayed in vitro, Nucleic Acids Res. 10: 1781–1797.PubMedCrossRefGoogle Scholar
  54. 54.
    Matsumoto, H., Taniguchi, N., and Deutsch, H. F., 1984, Isolation, characterization, and esterase and CO hydration activities of ubiquitin from bovine erythrocytes, Arch. Biochem. Biophys. 234: 426–433.PubMedCrossRefGoogle Scholar
  55. 55.
    Taniguchi, N., and Matsumoto, H., 1985, The p-nitrophenyl phosphatase activity of ubiquitin from bovine erythrocytes, Comp. Biochem. Physiol. 81B: 587–590.Google Scholar
  56. 56.
    Jabusch, J. R., and Deutsch, H. F., 1985, Localization of lysine acetylated in ubiquitin reacted with p-nitrophenyl acetate, Arch. Biochem. Biophys. 238: 170–177.PubMedCrossRefGoogle Scholar
  57. 57.
    Cox, M. J., 1986, Chemical modification of ubiquitin, M.S. Thesis, Emory University.Google Scholar
  58. 58.
    Wilkinson, K. D., 1987, Protein ubiquitinization: A regulatory post-translational modification, Anti-Cancer Drug Des. 2: 211–229.Google Scholar
  59. 59.
    Duerksen-Hughes, P. J., Xu, X., and Wilkinson, K. D., 1987, The ubiquitin binding sites of the activating enzyme and proteases: Evidence for differential interactions around Arg-74 of ubiquitin, Biochemistry 26: 6980–6987.PubMedCrossRefGoogle Scholar
  60. 60.
    Ecker, D. J., Khan, M. I., Marsh, J., Butt, T., and Crooke, S. T., 1987, Chemical synthesis and expression of a cassette adapted ubiquitin gene, J. Biol. Chem. 262: 3524–3527.PubMedGoogle Scholar
  61. 61.
    Pickart, C. M., and Rose, I. A., 1985, Ubiquitin carboxyl-terminal hydrolase acts on ubiquitin carboxyl-terminal amides, J. Biol. Chem. 260: 7903–7910.PubMedGoogle Scholar
  62. 62.
    Hough, R., and Rechsteiner, M., 1986, Ubiquitin-lysozyme conjugates: Purification and susceptibility to proteolysis, J. Biol. Chem. 261: 2391–2399.PubMedGoogle Scholar
  63. 63.
    Hershko, A., Leshinsky, E., Ganoth, D., and Heller, H., 1984, ATP-dependent degradation of ubiquitin-protein conjugates, Proc. Natl. Acad. Sci. U.S.A. 81: 1619–1623.PubMedCrossRefGoogle Scholar
  64. 64.
    Lee, P. L., Midelfort, C. F., Murakami, K., and Hatcher, V. B., 1986, Multiple forms of ubiquitin-protein ligase. Binding of activated ubiquitin to protein substrates, Biochemistry 25: 3134–3138.PubMedCrossRefGoogle Scholar
  65. 65.
    Wilkinson, K. D., Cox, M. J., Mayer, A. N., and Frey, T., 1986, Synthesis and characterization of ubiquitin ethyl ester, a new substrate for ubiquitin carboxyl-terminal hydrolase, Biochemistry 25: 6644–6649.PubMedCrossRefGoogle Scholar
  66. 66.
    Mayer, A. N., 1986, Resolution of ubiquitin carboxyl-terminal hydrolases using ubiquitin ethyl ester as the substrate, M.S. Thesis, Emory University.Google Scholar
  67. 67.
    Kanda, F., Sykes, D. E., Yasuda, H., Sandberg, A. A., and Matsui, S.-L, 1986, Substrate recognition of isopeptidase: Specific cleavage of the (α-glycyl)lysine linkage of ubiquitin protein conjugates, Biochim. Biophys. Acta 870: 64–75.PubMedCrossRefGoogle Scholar
  68. 68.
    Wilkinson, K. D., Marriott, D., and Chau, V., 1988, Non-enzymatic synthesis of ubiquitin-calmodulin conjugates: A general synthetic route to prepare ubiquitin conjugates (manuscript submitted).Google Scholar
  69. 69.
    Haas, A. L., and Rose, I. A., 1981, Hemin inhibits ATP-dependent proteolysis: Role of hemin in regulating conjugate degradation, Proc. Natl. Acad. Sci. U.S.A. 78: 6845–6848.PubMedCrossRefGoogle Scholar
  70. 70.
    Tanaka, K., Waxman, L., and Goldberg, A. L., 1984, Vanadate inhibits the ATP-dependent degradation of proteins in reticulocytes without affecting ubiquitin conjugation, J. Biol. Chem. 259: 2803–2809.PubMedGoogle Scholar
  71. 71.
    Breslow, E., Daniel, R., Ohba, R., and Tate, S., 1986, Inhibition of ubiquitin-dependent proteolysis by non-ubiquitinable proteins, J. Biol. Chem. 261: 6530–6535.PubMedGoogle Scholar
  72. 72.
    Hough, R., Pratt, G., and Rechsteiner, M., 1986, Ubiquitin-lysozyme conjugates, identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates, J. Biol. Chem. 261: 2400–2408.PubMedGoogle Scholar
  73. 73.
    Pickart, C. M., and Rose, I. A., 1987, Mechanism of ubiquitin carboxyl-terminal hydrolase: Borohydride and hydroxylamine inactivate in the presence of ubiquitin, J. Biol. Chem. 261: 10210–10217.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Keith D. Wilkinson
    • 1
  1. 1.Department of BiochemistryEmory University School of MedicineAtlantaGeorgia

Personalised recommendations