Advertisement

Abstract

Electron energy-loss spectroscopy (EELS) studies the energy distribution of electrons that have been transmitted through a thin sample. By combining electron spectroscopy and transmission electron microscopy, the analytical power of EELS is coupled with the ability to select, image, and obtain diffraction patterns from small areas. Although the use of EELS as a microanalytical technique was first discussed and demonstrated forty years ago by Hillier and Baker (1944), it is only recently that advances in microscope instrumentation and vacuum technology have made it a practical proposition for routine laboratory use. Like the technique of energy-dispersive x-ray spectroscopy (EDXS) discussed in the previous chapters, electron energy-loss spectroscopy provides a way to identify the elements in the sample and to quantify the amount of each. Since EELS can also detect low-atomic-number elements with high sensitivity, it can offer important advantages over EDS in some applications. In addition, EELS can provide detailed information about the electronic state and chemical bonding of the sample. This chapter describes the principles and practice of obtaining and interpreting EEL spectra, and the following chapters discuss the application of these ideas to problems in materials science and biology.

Keywords

Energy Loss Baton Rouge Partial Cross Section Plasmon Peak Acceptance Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, C. C., and Krivanek, O. L. (1982), “A Catalog of Energy Loss Spectra,” Arizona State Univ. HREM Facility, Tempe.Google Scholar
  2. Andrew, J. W.; Ottensmeyer, F. P.; and Martell, E. (1978), Proc. 9th Intl. Cong. Elec. Mic. (J. M. Sturgess, ed.), Imperial Press, Toronto, 1, 40.Google Scholar
  3. Bentley, J.; Lehman, G. L.; and Sklad, P. S. (1981), in “Analytical Electron Microscopy 1981” (R. H. Geiss, ed.), San Francisco Press, San Francisco, p. 161.Google Scholar
  4. Chapman, J. N.; Roberts, P. T. E.; MacLeod, A. M.; and Ferner, R. P. (1980), Inst. of Physics Conf. Series 52, 77.Google Scholar
  5. Colliex, C.; Jeanguillaume, C.; and Trebbia, P. (1981), in “Microprobe Analysis of Biological Systems” (J. Hutchinson and A. Somlyo, ed.), Acad. Press, New York, p. 251.Google Scholar
  6. Crewe, A. V.; Isaacson, M.; and Johnson, D. E. (1971), Rev. Sci. Instrum. 42, 411.PubMedCrossRefGoogle Scholar
  7. Egerton, R. F. (1975), Phil. Mag. 31, 199.CrossRefGoogle Scholar
  8. — (1978), Ultramicroscopy 3, 39.CrossRefGoogle Scholar
  9. — (1980a), in “Scanning Electron Microscopy 1980” (O. Johari, ed.), SEM Inc., Chicago, 1, 41.Google Scholar
  10. — (1980b), Proc. 39th Annl. EMSA Mtg. (G. W. Bailey, ed.), Claitot’s Pub. Div., Baton Rouge, p. 130.Google Scholar
  11. — (1981a), in “Analytical Electron Microscopy” (R. H. Geiss, ed.), San Francisco Press, San Francisco, p. 221.Google Scholar
  12. — (1981b), Proc. 39th Annl. Mtg. EMSA (G. W. Bailey, ed.), Claitor’s Pub. Div., Baton Rouge, p. 368.Google Scholar
  13. — (1982), in “Microbeam Analysis 1982” (K. F. J. Heinrich, ed.), San Francisco Press, San Francisco, p.43.Google Scholar
  14. Egerton, R. F.; Philips, J.; and Whelan, M. J. (1975), in “Developments in Electron Microscopy and Microanalysis” (J. Venables, ed.), Acad. Press, London, p. 137.Google Scholar
  15. Egerton, R. F., and Whelan, M. J. (1974), J. Electron Spectros. 3, 232.CrossRefGoogle Scholar
  16. Hainfeld, J., and Isaacson, M. (1978), Ultramicroscopy 3, 87.PubMedCrossRefGoogle Scholar
  17. Higgs, A., and Krivanek, O. L. (1981), Proc. 39th EMSA Mtg. (G. W. Bailey, ed.), Claitot’s Pub. Div., Baton Rouge.Google Scholar
  18. Hillier, J., and Baker, R. F. (1944), J. Appl. Phys. 15, 663.CrossRefGoogle Scholar
  19. Howie, A. (1981), Proc. 39th Annl. Mtg. (G. W. Bailey, ed.), Claitot’s Pub. Div., Baton Rouge, p. 186.Google Scholar
  20. Isaacson, M. (1972), J. Chem. Phys. 56, 1813.CrossRefGoogle Scholar
  21. — (1978), Proc. 11th Annl. SEM Symp. (O. Johari, ed.), SEM Inc., Chicago, 1, 763.Google Scholar
  22. Isaacson, M.; Ohtsuki, M.; and Utlaut, M. (1979), in “Introduction to Analytical Electron Microscopy” (J. Hren, ed.), Plenum Press, New York, p. 343.CrossRefGoogle Scholar
  23. Jenkins, D. G.; Rossouw, C. J.; Booker, G. R.; and Fry, P. W. (1980), Inst. of Physics Conf. Series 52, 81.Google Scholar
  24. Johnson, D. E. (1980), in “Scanning Electron Microscopy 1980” (O. Johari, ed.), SEM Inc., Chicago, 1, 33.Google Scholar
  25. Johnson, D. E.; Monson, K. L.; Csillag, S.; and Stern, E. A. (1981a), in “Analytical Electron Microscopy 1981” (R. H. Geiss, ed.), San Francisco Press, San Francisco, p. 205.Google Scholar
  26. Johnson, D. E.; Csillag, S.; Monson, K. L.; and Stern, E. A. (1981b), Proc. 39th Annl. EMSA Mtg. (G. W. Bailey, ed.), Claitot’s Pub. Div., Baton Rouge, p. 370.Google Scholar
  27. Jones, B. L.; Jenkins, D. G.; and Booker, G. R. (1977), Inst. of Physics Conf. Series 36, 73.Google Scholar
  28. Jouffrey, B. (1978), in “Short Wavelength Microscopy,” New York Acad. of Sci., New York, p. 29.Google Scholar
  29. Joy, D. C. (1982a), in “Microbeam Analysis 1982” (K. F. J. Heinrich, ed.), San Francisco Press, San Francisco, p. 98.Google Scholar
  30. — (1982b), Ultramicroscopy 9, 289.CrossRefGoogle Scholar
  31. — (1983), Proc. NSF Workshop on Electron Interaction, SEM Inc., p. 251.Google Scholar
  32. Joy, D. C.; Egerton, R. F.; and Maher, D. M. (1979), in “Scanning Electron Microscopy 1979” (O. Johari, ed.), SEM Inc., Chicago, 2, 817.Google Scholar
  33. — (1978a), J. Micros. 114, 117.CrossRefGoogle Scholar
  34. — (1978b), Ultramicroscopy 3, 69.CrossRefGoogle Scholar
  35. — (1980a), in “Scanning Electron Microscopy 1980” (O. Johari, ed.), SEM Inc., Chicago, 1, 25.Google Scholar
  36. — (1980b), Ultramicroscopy 5, 333.CrossRefGoogle Scholar
  37. Leapman, R. D.; Grunes, P. L.; Fejes, P. L.; and Silcox, J. (1981), in “EXAFS Spectroscopy” (B. Teo and D. C. Joy, ed.), Plenum Press, New York, p. 217.CrossRefGoogle Scholar
  38. Leapman, R. D., and Swyt, C. R. (1981), in “Analytical Electron Microscopy 1981” (R. H. Geiss, ed.), San Francisco Press, San Francisco, p. 164.Google Scholar
  39. — (1983), in “Microbeam Analysis 1983” (R. Gooley, ed.), San Francisco Press, San Francisco, p. 163.Google Scholar
  40. Maher, D. M.; Joy, D. C.; Egerton, R. F.; and Mochel, P. (1979), J. Appl. Phys. 50, 5105.CrossRefGoogle Scholar
  41. Maher, D. M.; Mochel, P.; and Joy, D. C. (1978), Proc. 13th Annl. Conf. Microbeam Analysis Soc. (D. Kyser, ed.), San Francisco Press, San Francisco, p. 53A-G.Google Scholar
  42. Shuman, H. (1981), Ultramicroscopy 6, 163.PubMedGoogle Scholar
  43. Spence, J. C. H. (1977), Proc. 35th Annl. Mtg. EMSA (G. W. Bailey, ed.), Claitot’s Pub. Div., Baton Rouge, p. 234.Google Scholar
  44. Trebbia, P.; Ballongue, P.; and Colliex, C. (1977), Proc. 35th Annl. Mtg. EMSA (G. W. Bailey, ed.), Claitot’s Pub. Div., Baton Rouge, p. 232.Google Scholar
  45. Wall, J. (1979), in “Introduction to Analytical Electron Microscopy” (J. Hren, J. Goldstein, and D. C. Joy, ed.), Plenum Press, New York, p. 333.CrossRefGoogle Scholar
  46. Williams, D. B., and Edington, J. W. (1976), J. Micros. 108, 113.CrossRefGoogle Scholar
  47. Zaluzec, N. (1981), in “Analytical Electron Microscopy 1981” (R. H. Geiss, ed.), San Francisco Press, San Francisco, p. 193.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • D. C. Joy
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations